Rurioctocog alfa pegol is an extended-half-life full-length recombinant factor VIII (FVIII) bound to 20-kDa polyethylene glycol (PEG) that has been shown to be well tolerated and efficacious in the treatment and prevention of bleeding events in previously treated patients with severe hemophilia A. Here, we present a comprehensive analysis of immunogenicity data collected during 6 clinical studies of rurioctocog alfa pegol, including a total of 360 unique previously treated patients with severe hemophilia A. The analysis included treatment-emerging FVIII-neutralizing antibodies (FVIII inhibitors); preexisting and treatment-emerging antibodies binding to FVIII, PEG-FVIII, or PEG; and treatment-emerging antibodies binding to Chinese hamster ovary host cell proteins.
View Article and Find Full Text PDFBackground: An inhibitor can develop in congenital hemophilia A (HA) patients against exogenous infused factor (F)VIII, whereas in acquired HA (AHA) inhibitors initially develop against endogenous FVIII. Inhibitors can be detected with the Nijmegen Bethesda Assay (NBA), which has an international cut-off level of 0.60 Nijmegen Bethesda Units/mL (NBU/mL).
View Article and Find Full Text PDFHemophilia A is a rare congenital bleeding disorder caused by a deficiency of functionally active coagulation factor VIII (FVIII). Most patients with the severe form of the disease require FVIII replacement therapies, which are often associated with the development of neutralizing antibodies against FVIII. Why some patients develop neutralizing antibodies while others do not is not fully understood.
View Article and Find Full Text PDFBackground: Previous studies have reported marked interindividual variation in factor VIII (FVIII) clearance in patients with hemophilia (PWH) and proposed a number of factors that influence this heterogeneity.
Objectives: To investigate the importance of the clearance rates of endogenous von Willebrand factor (VWF) compared with those of other FVIII half-life modifiers in adult PWH.
Methods: The half-life of recombinant FVIII was determined in a cohort of 61 adult PWH.
Background And Aims: Hemophilia A is a severe bleeding disorder caused by the deficiency of functionally active coagulation factor VIII (FVIII). The induction of neutralizing anti-drug antibodies is a major complication in the treatment of hemophilia A patients with FVIII replacement therapies. Why some patients develop neutralizing antibodies (FVIII inhibitors) while others do not is not well understood.
View Article and Find Full Text PDFA major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown.
View Article and Find Full Text PDFFactor VIII (FVIII) inhibitor formation is a major clinical concern during replacement therapy in patients with hemophilia A. Immune tolerance induction (ITI) is the only therapeutic approach to attempt inhibitor eradication and establishment of long-term immune tolerance to FVIII. Hemophilia Inhibitor Previously Untreated Patient (PUP) Study (HIPS) was a prospective clinical trial to investigate changes in the immune system of PUPs with severe hemophilia A.
View Article and Find Full Text PDFConjugation to polyethylene glycol (PEG) is commonly used to enhance drug delivery and efficacy by extending the half-life of the drug molecule. This has important implications for reducing treatment burden in diseases that require chronic prophylaxis, such as hemophilia. Clearance of PEG molecules with high molecular weights (≥ 40 kDa) has been reported to cause cellular vacuolation in mammals.
View Article and Find Full Text PDFThe root cause of autoantibody formation against factor VIII (FVIII) in acquired hemophilia A (AHA) remains unclear. We aimed to assess whether AHA is exclusively associated with autoantibodies toward FVIII or whether patients also produce increased levels of autoantibodies against other targets. A case-control study was performed enrolling patients with AHA and age-matched controls.
View Article and Find Full Text PDFPrevious studies identified nonneutralizing FVIII-specific antibodies in the circulation of severe and nonsevere hemophilia A (sHA and nsHA) patients without FVIII inhibitors and also in some healthy individuals. To gain a better understanding of the nature of these nonneutralizing antibody responses, we analyzed and compared anti-FVIII antibody signatures in 3 study cohorts: previously treated sHA as well as nsHA patients without FVIII inhibitors, and healthy donors. FVIII-binding IgM, IgG1-4, and IgA antibodies were differentiated, FVIII-specificity was assessed, and associated apparent affinity constants were determined.
View Article and Find Full Text PDFThe soluble cytoplasmic tail of CD45 (ct-CD45) is a cleavage fragment of CD45, that is generated during the activation of human phagocytes. Upon release to the extracellular space, ct-CD45 binds to human T cells and inhibits their activation in vitro. Here, we studied the potential role of TLR4 as a receptor for ct-CD45.
View Article and Find Full Text PDFAdeno-associated viruses (AAVs) are emerging as one of the vehicles of choice for gene therapy. However, the potential immunogenicity of these vectors is a major limitation of their use, leading to the necessity of a better understanding of how viral vectors engage the innate immune system. In this study, we demonstrate the immune response mediated by an AAV vector in a mouse model.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2020
One important limitation for achieving therapeutic expression of human factor VIII (FVIII) in hemophilia A gene therapy is inefficient secretion of the FVIII protein. Substitution of five amino acids in the A1 domain of human FVIII with the corresponding porcine FVIII residues generated a secretion-enhanced human FVIII variant termed B-domain-deleted (BDD)-FVIII-X5 that resulted in 8-fold higher FVIII activity levels in the supernatant of an cell-based assay system than seen with unmodified human BDD-FVIII. Analysis of purified recombinant BDD-FVIII-X5 and BDD-FVIII revealed similar specific activities for both proteins, indicating that the effect of the X5 alteration is confined to increased FVIII secretion.
View Article and Find Full Text PDFGene therapy has the potential to maintain therapeutic blood clotting factor IX (FIX) levels in patients with hemophilia B by delivering a functional human F9 gene into liver cells. This phase 1/2, open-label dose-escalation study investigated BAX 335 (AskBio009, AAV8.sc-TTR-FIXR338Lopt), an adeno-associated virus serotype 8 (AAV8)-based FIX Padua gene therapy, in patients with hemophilia B.
View Article and Find Full Text PDFAdeno-associated virus serotype 8 (AAV8) gene therapy has shown efficacy in several clinical trials and is considered a highly promising technology to treat monogenic diseases such as hemophilia A and B. However, a major drawback of AAV8 gene therapy is that it can be applied only once because anti-AAV8 immunity develops after the first treatment. Readministration may be required in patients who are expected to need redosing, eg, due to organ growth, or to boost suboptimal expression levels, but no redosing protocol has been established.
View Article and Find Full Text PDFExtended half-life (EHL) factor therapies are needed to reduce the burden of prophylaxis and improve treatment adherence in patients with hemophilia. BAX 826 is a novel polysialylated full-length recombinant factor VIII [polysialyic acid (PSA) rFVIII] with improved pharmacokinetics (PK), prolonged pharmacology, and maintained safety attributes to enable longer-acting rFVIII therapy. In factor VIII (FVIII)-deficient hemophilic mice, PSArFVIII showed a substantially higher mean residence time (>2-fold) and exposure (>3-fold), and prolonged efficacy in tail-bleeding experiments (48 vs.
View Article and Find Full Text PDFPreexisting immunity against adeno-associated virus (AAV) is a major challenge facing AAV gene therapy, resulting in the exclusion of patients from clinical trials. Accordingly, proper assessment of anti-AAV immunity is necessary for understanding clinical data and for product development. Previous studies on anti-AAV prevalence lack method standardization, rendering the assessment of prevalence difficult.
View Article and Find Full Text PDFPurpose: To explore how the natural heterogeneity of human coagulation factor VIII (FVIII) and the processing of its B-domain specifically modulate protein aggregation.
Methods: Recombinant FVIII (rFVIII) molecular species containing 70% or 20% B-domain, and B-domain-deleted rFVIII (BDD-rFVIII), were separated from full-length recombinant FVIII (FL-rFVIII). Purified human plasma-derived FVIII (pdFVIII) was used as a comparator.
Patients with preexisting anti-adeno-associated virus serotype 8 (AAV8) neutralizing antibodies (NAbs) are currently excluded from AAV8 gene therapy trials. Therefore, the assessment of biologically relevant AAV8-NAb titers is critical for product development in gene therapy. However, standardized assays have not been routinely used to determine anti-AAV8-NAb titers, contributing to a wide range of reported anti-AAV8 prevalence rates.
View Article and Find Full Text PDFThe mechanism of the efficacy of Intravenous immunoglobulins (IVIG) in autoimmune and inflammatory diseases is not well understood. This study aimed at understanding mechanisms of IVIG-mediated suppression of effector cell activities of peripheral blood mononuclear cells (PBMC) in antibody-dependent cellular cytotoxicity (ADCC). We were particularly interested in CD56 NK cells, the main ADCC effector cells in PBMC.
View Article and Find Full Text PDFThe development of inhibitory antibodies to factor VIII is the most serious complication of replacement therapy in hemophilia A. Activation of the innate immune system during exposure to this protein contributes to inhibitor development. However, avoidance of factor VIII exposure during innate immune system activation by external stimuli (e.
View Article and Find Full Text PDFPurpose: Recent findings demonstrated anti-PEG antibody formation in some healthy individuals and patients who have not received PEGylated biotherapeutics. Some of these findings evoked criticism because of shortcomings in the antibody assays used. To better understand this topic, we established robust antibody analytics and screened two cohorts of healthy individuals and one cohort of hemophilia patients for the expression of anti-PEG antibodies.
View Article and Find Full Text PDFThe substantial variability in pharmacokinetic parameters in hemophilia patients A poses a challenge for optimal treatment with factor VIII (FVIII) products. We investigated the effect of FVIII-specific immunoglobulin G (IgG) on FVIII half-life in a cohort of 42 adult patients with severe and moderate hemophilia A without inhibitors. Fifteen (35.
View Article and Find Full Text PDFInflammatory signals such as pathogen- and danger-associated molecular patterns have been hypothesized as risk factors for the initiation of the anti-factor VIII (FVIII) immune response seen in 25% to 30% of patients with severe hemophilia A (HA). In these young patients, vaccines may be coincidentally administered in close proximity with initial exposure to FVIII, thereby providing a source of such stimuli. Here, we investigated the effects of 3 vaccines commonly used in pediatric patients on FVIII immunogenicity in a humanized HA murine model with variable tolerance to recombinant human FVIII (rhFVIII).
View Article and Find Full Text PDFNeutralizing autoantibodies against factor VIII (FVIII), also called FVIII inhibitors, are the cause of acquired hemophilia A (AHA). They are quantified in the Bethesda assay or Nijmegen-modified Bethesda assay by their ability to neutralize FVIII in normal human plasma. However, FVIII inhibitors do not represent the whole spectrum of anti-FVIII autoantibodies.
View Article and Find Full Text PDF