Publications by authors named "Birgit Aengeneyndt"

The beta genus of human papillomaviruses (ß-HPV) includes approximately 50 different viral types that are subdivided into five species (ß-1 through ß-5). Nonmelanoma cancers may involve some ß-1 and ß-2 HPV types, but the biology of most ß-HPV types and their possible connections to human disease are still little characterized. In this study, we studied the effects of ß-3 type HPV49 in a novel transgenic (Tg) mouse model, using a cytokeratin K14 promoter to drive expression of the E6 and E7 genes from this virus in the basal skin epidermis and the mucosal epithelia of the digestive tract (K14 HPV49 E6/E7-Tg mice).

View Article and Find Full Text PDF

Many findings support a possible involvement of a subgroup of human papillomaviruses (HPVs), called cutaneous beta HPV types, in the development of non-melanoma skin cancer. The skin of transgenic (Tg) mice expressing viral oncoproteins E6 and E7 from different cutaneous beta HPV types, including HPV38, showed an increased susceptibility to UV-induced and/or chemically induced skin carcinogenesis compared with wild-type animals. In this study, we show that beta HPV38 E6 and E7 oncoproteins act as promoter and progression factors in multi-stage skin carcinogenesis, strongly cooperating with the initiator and DNA damage agent 7,12-dimethylbenz[a]anthracene.

View Article and Find Full Text PDF

Cutaneous beta human papillomavirus (HPV) types appear to be involved in the development of non-melanoma skin cancer (NMSC); however, it is not entirely clear whether they play a direct role. We have previously shown that E6 and E7 oncoproteins from the beta HPV type 38 display transforming activities in several experimental models. To evaluate the possible contribution of HPV38 in a proliferative tissue compartment during carcinogenesis, we generated a new transgenic mouse model (Tg) where HPV38 E6 and E7 are expressed in the undifferentiated basal layer of epithelia under the control of the Keratin 14 (K14) promoter.

View Article and Find Full Text PDF

Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to latency and disease. Dendritic cells (DCs) induce effective immune responses after vaccination, but might also induce immune modulation during infection.

View Article and Find Full Text PDF