Publications by authors named "Birger Horstmann"

Silicon presents itself as a high-capacity anode material for lithium-ion batteries with a promising future. The high ability for lithiation comes along with massive volume changes and a problematic voltage hysteresis, causing reduced efficiency, detrimental heat generation, and a complicated state-of-charge estimation. During slow cycling, amorphous silicon nanoparticles show a larger voltage hysteresis than after relaxation periods.

View Article and Find Full Text PDF

Transference numbers play an important role in understanding the dynamics of electrolytes and assessing their performance in batteries. Unfortunately, these transport parameters are difficult to measure in highly concentrated liquid electrolytes such as ionic liquids. Also, the interpretation of their sign and magnitude has provoked an ongoing debate in the literature further complicated by the use of different languages.

View Article and Find Full Text PDF

Lithium metal batteries suffer from low cycle life. During discharge, parts of the lithium are not stripped reversibly and remain isolated from the current collector. This isolated lithium is trapped in the insulating remaining solid-electrolyte interphase (SEI) shell and contributes to the capacity loss.

View Article and Find Full Text PDF

While ion transport processes in concentrated electrolytes, e.g., based on ionic liquids (IL), are a subject of intense research, the role of conservation laws and reference frames is still a matter of debate.

View Article and Find Full Text PDF

The formation of passivating films is a common aging phenomenon, for example in weathering of rocks, silicon, and metals. In many cases, a dual-layer structure with a dense inner and a porous outer layer emerges. However, the origin of this dual-layer growth is so far not fully understood.

View Article and Find Full Text PDF

Ionic liquids offer unique bulk and interfacial characteristics as battery electrolytes. Our continuum approach naturally describes the electrolyte on a macroscale. An integral formulation for the molecular repulsion, which can be quantitatively determined by both experimental and theoretical methods, models the electrolyte on the nanoscale.

View Article and Find Full Text PDF

The capacity fade of modern lithium ion batteries is mainly caused by the formation and growth of the solid-electrolyte interphase (SEI). Numerous continuum models support its understanding and mitigation by studying SEI growth during battery storage. However, only a few electrochemical models discuss SEI growth during battery operation.

View Article and Find Full Text PDF

Continued growth of the solid-electrolyte interphase (SEI) is the major reason for capacity fade in modern lithium-ion batteries. This growth is made possible by a yet unidentified transport mechanism that limits the passivating ability of the SEI towards electrolyte reduction. We, for the first time, differentiate the proposed mechanisms by analyzing their dependence on the electrode potential.

View Article and Find Full Text PDF

Ionic liquids (ILs) form a multilayered structure at the solid/electrolyte interface, and the addition of solutes can alter it. For this purpose, we have investigated the influence of the silver bis(trifluoromethylsulfonyl)amide (AgTFSA) concentration in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py]TFSA) on the layering using in situ atomic force microscopy. AFM investigations revealed that the Au(111)/electrolyte interface indeed depends on the concentration of the salt where a typical " IL" multilayered structure is retained only at quite low concentrations of the silver salt (e.

View Article and Find Full Text PDF

Neutral aqueous electrolytes have been shown to extend both the calendar life and cycling stability of secondary zinc-air batteries (ZABs). Despite this promise, there are currently no modeling studies investigating the performance of neutral ZABs. Traditional continuum models are numerically insufficient to simulate the dynamic behavior of these complex systems because of the rapid, orders-of-magnitude concentration shifts that occur.

View Article and Find Full Text PDF

We develop a novel theory for the continuous electrochemical formation of porous films to study the solid electrolyte interphase (SEI) on lithium ion battery anodes. Existing SEI studies model a homogeneous morphology and a single relevant transport mechanism. Our approach, in contrast, is based on two transport mechanisms and enables us to track SEI porosity in a spatially resolved way.

View Article and Find Full Text PDF

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter, we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical nonequilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current.

View Article and Find Full Text PDF

We propose a novel realization of Anderson localization in nonequilibrium states of ultracold atoms in an optical lattice. A Rabi pulse transfers part of the population to a different internal state with infinite effective mass. These frozen atoms create a quantum superposition of different disorder potentials, localizing the mobile atoms.

View Article and Find Full Text PDF