Ground-based monitoring of seismicity and modulation by external forces in the field of planetary seismology remains equivocal due to the lack of natural observations. Constrained by the natural observations (including Earthquakes, Moonquakes, and Marsquakes) and theoretical models, we present the variation in gravitational acceleration "g" of different solar system objects, combined with external harmonic forcings that are responsible for seismicity modulation on the planetary bodies and their natural satellites. From the global diversity in seismicity modulation, it has been observed that the plate-boundary regions on the Earth exhibit both short and long-period seismicity modulation.
View Article and Find Full Text PDFUrban land and its expansion have profoundly impacted the global environment, including the stress change in the earth's subsurface, even though urban land is a small fraction of the global land surface. Divulging such effects has never been more important, given the role of stress in determining the safety of the urban population against earthquakes. However, knowledge of this time-dependent non-linear effect of urbanization on the subsurface remains in the gray area.
View Article and Find Full Text PDFThe non-tectonic deformation, either of natural or anthropogenic origin, may influence the earthquake occurrence process and seismicity rate along the plate-boundary or 'stable' plate-interiors domains. The low magnitude but moderate seismicity rate of Delhi region on the stable plate-interiors domains of India, exhibits significant variation both in short-term at annual seasonal scale and in long-term at decadal scale. It correlates with the anthropogenic groundwater pumping for the extensive irrigation, urban activities, and seasonally controlled hydrological loading cycle of Indo-Ganga Basin hosted freshwater aquifers.
View Article and Find Full Text PDFBackground: Urbanization, surplus energy uptake, decreased physical activities are general risk factors of metabolic syndrome However, it's status, and associated components remain unexplored in the Terai region of Nepal. This study evaluated the prevalence of metabolic syndrome and its components among adults with central obesity of Terai region of Nepal using International Diabetes Federation criteria.
Methods: Community based cross-sectional study was conducted in three Terai districts of Janakpur Zone, Nepal.
The interaction between seasonally-induced non-tectonic and tectonic deformation along the Himalayan plate boundary remains debated. Here, we propose that tectonic deformation along this plate boundary can be significantly influenced by the deformation induced by the non-tectonic hydrological loading cycles. We explore seasonal mass oscillations by continental water storage in Southeast Asia and Himalayan arc region using continuous Global Positioning System measurements and satellite data from the Gravity Recovery and Climate Experiment.
View Article and Find Full Text PDFWe study mixing of two fluids of different viscosity in a microfluidic channel or porous medium. We show that the synergetic action of alternating injection and viscous fingering leads to a dramatic increase in mixing efficiency at high Péclet numbers. Based on observations from high-resolution simulations, we develop a theoretical model of mixing efficiency that combines a hyperbolic mixing model of the channelized region ahead and a mixing-dissipation model of the pseudosteady region behind.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2011
Viscous fingering is a well-known hydrodynamic instability that sets in when a less viscous fluid displaces a more viscous fluid. When the two fluids are miscible, viscous fingering introduces disorder in the velocity field and exerts a fundamental control on the rate at which the fluids mix. Here we analyze the characteristic signature of the mixing process in viscously unstable flows, by means of high-resolution numerical simulations using a computational strategy that is stable for arbitrary viscosity ratios.
View Article and Find Full Text PDFMixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and enhance mixing. Here we describe the dissipative structure of miscible viscous fingering, and propose a two-equation model for the scalar variance and its dissipation rate.
View Article and Find Full Text PDF