Merozoite surface protein 1 (MSP1) has been identified as a target antigen for protective immune responses against asexual blood stage malaria, but effective vaccines based on MSP1 have not been developed so far. We have modified the sequence of Plasmodium yoelii MSP119 (the C-terminal region of the molecule) and examined the ability of the variant proteins to bind protective monoclonal antibodies and to induce protection by immunization. In parallel, we examined the structure of the protein and the consequences of the amino acid changes.
View Article and Find Full Text PDFThe discovery of effective new antimalarial agents is urgently needed. One of the most frequently studied molecules anchored to the parasite surface is the merozoite surface protein-1 (MSP1). At red blood cell invasion MSP1 is proteolytically processed, and the 19-kDa C-terminal fragment (MSP119) remains on the surface and is taken into the red blood cell, where it is transferred to the food vacuole and persists until the end of the intracellular cycle.
View Article and Find Full Text PDFThe high-resolution NMR structure of the N-domain of human eRF1, responsible for stop codon recognition, has been determined in solution. The overall fold of the protein is the same as that found in the crystal structure. However, the structures of several loops, including those participating in stop codon decoding, are different.
View Article and Find Full Text PDFIn order to examine the origins of the large positive cooperativity (ΔG(0)(coop) = -2.9 kcal mol(-1)) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements.
View Article and Find Full Text PDFTermination of translation in eukaryotes is triggered by two polypeptide chain release factors, eukaryotic class 1 polypeptide chain release factor (eRF1) and eukaryotic class 2 polypeptide chain release factor 3. eRF1 is a three-domain protein that interacts with eukaryotic class 2 polypeptide chain release factor 3 via its C-terminal domain (C-domain). The high-resolution NMR structure of the human C-domain (residues 277-437) has been determined in solution.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional.
View Article and Find Full Text PDFWe report NMR assignments of the protein backbone of the C-terminal domain (163 a.a.) of human class 1 translation termination factor eRF1.
View Article and Find Full Text PDFThe eukaryotic class 1 polypeptide chain release factor is a three-domain protein involved in the termination of translation, the final stage of polypeptide biosynthesis. In attempts to understand the roles of the middle domain of the eukaryotic class 1 polypeptide chain release factor in the transduction of the termination signal from the small to the large ribosomal subunit and in peptidyl-tRNA hydrolysis, its high-resolution NMR structure has been obtained. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal.
View Article and Find Full Text PDFSH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization.
View Article and Find Full Text PDFAmide protection factors have been determined from NMR measurements of hydrogen/deuterium amide NH exchange rates measured on assigned signals from Lactobacillus casei apo-DHFR and its binary and ternary complexes with trimethoprim (TMP), folinic acid and coenzymes (NADPH/NADP(+)). The substantial sizes of the residue-specific DeltaH and TDeltaS values for the opening/closing events in NH exchange for most of the measurable residues in apo-DHFR indicate that sub-global or global rather than local exchange mechanisms are usually involved. The amide groups of residues in helices and sheets are those most protected in apo-DHFR and its complexes, and the protection factors are generally related to the tightness of ligand binding.
View Article and Find Full Text PDFObjective: To test the null hypothesis that there is no significant difference between 3 methods of sheath removal: manual compression, mechanical compression with the Compressar, and mechanical compression with the Femostop.
Methods: The research design was experimental. Ninety patients were randomly assigned using a random-numbers table to undergo one of 3 methods of sheath removal.
Malarial merozoites invade erythrocytes; and as an essential step in this invasion process, the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP142) is further cleaved to a 33-kDa N-terminal polypeptide (MSP133) and an 19-kDa C-terminal fragment (MSP119) in a secondary processing step. Suramin was shown to inhibit both merozoite invasion and MSP142 proteolytic cleavage. This polysulfonated naphthylurea bound directly to recombinant P.
View Article and Find Full Text PDFNKR-P1A is a C-type lectin-like receptor on natural killer cells believed to be involved in the cytotoxicity of these cells. Ligands for this protein are not known. Here, we describe the binding of a fully sulphated disaccharide, sucrose octasulphate, by the recombinant C-type lectin-like domain of NKR-P1A.
View Article and Find Full Text PDFWe have investigated the individual roles of unmodified prolactin (U-PRL) and a mimic of phosphorylated PRL (S179D PRL) in mammary development. Recombinant versions of the PRLs were delivered to rats throughout pregnancy at a rate of 6 microg/24 h per rat and to non-pregnant females at a rate of 24 microg/24 h per rat. Measurement of progesterone, corticosterone, and estradiol showed no effect of the administered PRLs on the levels of these other mammotropic hormones.
View Article and Find Full Text PDFA general method is presented for magnetic field alignment of proteins in solution. By tagging a target protein with calmodulin saturated with paramagnetic lanthanide ions it is possible to measure substantial residual dipolar couplings (RDC) whilst minimising the effects of pseudocontact shifts on the target protein. A construct was made consisting of a calmodulin-binding peptide (M13 from sk-MLCK) attached to a target protein, dihydrofolate reductase in this case.
View Article and Find Full Text PDFGalectin-3, a beta-galactoside binding protein, contains a C-terminal carbohydrate recognition domain (CRD) and an N-terminal domain that includes several repeats of a proline-tyrosine-glycine-rich motif. Earlier work based on a crystal structure of human galectin-3 CRD, and modeling and mutagenesis studies of the closely homologous hamster galectin-3, suggested that N-terminal tail residues immediately preceding the CRD might interfere with the canonical subunit interaction site of dimeric galectin-1 and -2, explaining the monomeric status of galectin-3 in solution. Here we describe high-resolution NMR studies of hamster galectin-3 (residues 1--245) and several of its fragments.
View Article and Find Full Text PDFMerozoite surface protein 1 (MSP-1) is a precursor to major antigens on the surface of Plasmodium spp. merozoites, which are involved in erythrocyte binding and invasion. MSP-1 is initially processed into smaller fragments; and at the time of erythrocyte invasion one of these of 42 kDa (MSP-1(42)) is subjected to a second processing, producing 33 kDa and 19 kDa fragments (MSP-1(33) and MSP-1(19)).
View Article and Find Full Text PDFIn a series of complexes of Lactobacillus casei dihydrofolate reductase (DHFR) formed with substrates and substrate analogues, the (1)H/(15)N NMR chemical shifts for the guanidino group of the conserved Arg 57 residue were found to be sensitive to the mode of binding of their H(eta) protons to the charged oxygen atoms in ligand carboxylate groups. In all cases, Arg 57 showed four nonequivalent H(eta) signals indicating hindered rotation about the N(epsilon)-C(zeta) and C(zeta)-N(eta) bonds. The H(eta)(12) and H(eta)(22) protons have large downfield shifts as expected for a symmetrical end-on interaction with the ligand carboxylate group.
View Article and Find Full Text PDFNMR measurements have been used to investigate rates of ring-flipping and the activation parameters for the trimethoxybenzyl ring of the antibacterial drug trimethoprim (TMP) bound to Lactobacillus casei dihydrofolate reductase (DHFR) for a series of ternary complexes formed with analogues of the coenzyme NADPH. Rates were obtained at several temperatures from line shape analyses ((13)C-edited HSQC (1)H spectra) and transfer of magnetization measurements (zz-HSQC) on complexes containing 3'-O-[(13)C]trimethoprim. Examination of the structures of the complexes indicates that ring-flipping can only be achieved following major conformational changes and transient fluctuations of the protein and coenzyme structure around the trimethoxybenzyl ring.
View Article and Find Full Text PDFA new method is proposed for docking ligands into proteins in cases where an NMR-determined solution structure of a related complex is available. The method uses a set of experimentally determined values for protein-ligand, ligand-ligand, and protein-protein restraints for residues in or near to the binding site, combined with a set of protein-protein restraints involving all the other residues which is taken from the list of restraints previously used to generate the reference structure of a related complex. This approach differs from ordinary docking methods where the calculation uses fixed atomic coordinates from the reference structure rather than the restraints used to determine the reference structure.
View Article and Find Full Text PDFMerozoite surface protein-1 (MSP-1) is a major candidate in the development of a vaccine against malaria. Immunisation with a recombinant fusion protein containing the two Plasmodium yoelii MSP-1 C-terminal epidermal growth factor-like domains (MSP-1(19)) can protect mice against homologous but not heterologous challenge, and therefore, antigenic differences resulting from sequence diversity in MSP-1(19) may be crucial in determining the potential of this protein as a vaccine. Representative sequence variants from a number of distinct P.
View Article and Find Full Text PDFThe solution structure of the 96-residue C-terminal fragment of the merozoite surface protein 1 (MSP-1) from Plasmodium falciparum has been determined using nuclear magnetic resonance (NMR) spectroscopic measurements on uniformly13C/15N-labelled protein, efficiently expressed in the methylotrophic yeast Komagataella (Pichia) pastoris. The structure has two domains with epidermal growth factor (EGF)-like folds with a novel domain interface for the EGF domain pair interactions, formed from a cluster of hydrophobic residues. This gives the protein a U-shaped overall structure with the N-terminal proteolytic processing site close to the C-terminal glycosyl phosphatidyl inositol (GPI) membrane anchor site, which is consistent with the involvement of a membrane-bound proteinase in the processing of MSP-1 during erythrocyte invasion.
View Article and Find Full Text PDF