The type I transmembrane protein BT-IgSF is predominantly localized in the brain and testes. It belongs to the CAR subgroup of Ig cell adhesion proteins, that are hypothesized to regulate connexin expression or localization. Here, we studied the putative link between BT-IgSF and connexins in astrocytes, ependymal cells and neurons of the mouse.
View Article and Find Full Text PDFIn this issue, Lazaro et al. use iPSC-derived presomitic mesoderm cells to analyze the oscillatory expression of somitic clock genes. Comparison of a wide range of species, including mouse, rabbit, cattle, rhinoceros, human, and marmoset, demonstrates an excellent correlation between biochemical reaction speed and the tempo of the clock.
View Article and Find Full Text PDFVagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice.
View Article and Find Full Text PDFThe bHLH transcription factor MyoD is a master regulator of myogenic differentiation, and its sustained expression in fibroblasts suffices to differentiate them into muscle cells. MyoD expression oscillates in activated muscle stem cells of developing, postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. The oscillatory period is around 3 h and thus much shorter than the cell cycle or circadian rhythm.
View Article and Find Full Text PDFCorticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits.
View Article and Find Full Text PDFThe precise execution of coordinated movements depends on proprioception, the sense of body position in space. However, the molecular underpinnings of proprioceptive neuron subtype identities are not fully understood. Here we used a single-cell transcriptomic approach to define mouse proprioceptor subtypes according to the identity of the muscle they innervate.
View Article and Find Full Text PDFSMER28 (Small molecule enhancer of Rapamycin 28) is an autophagy-inducing compound functioning by a hitherto unknown mechanism. Here, we confirm its autophagy-inducing effect by assessing classical autophagy-related parameters. Interestingly, we also discovered several additional effects of SMER28, including growth retardation and reduced G1 to S phase progression.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2022
Background: Sepsis and inflammation can cause intensive care unit-acquired weakness (ICUAW). Increased interleukin-6 (IL-6) plasma levels are a risk factor for ICUAW. IL-6 signalling involves the glycoprotein 130 (gp130) receptor and the JAK/STAT-pathway, but its role in sepsis-induced muscle wasting is uncertain.
View Article and Find Full Text PDFThe balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. Muscle stem cells can proliferate, they can generate differentiating cells, or they self-renew to produce new stem cells. Notch signaling plays a crucial role in this process.
View Article and Find Full Text PDFIt has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRt and Peri5, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve.
View Article and Find Full Text PDFTranscription factors (TFs) bind DNA in a sequence-specific manner and thereby regulate target gene expression. TF binding and its regulatory activity is highly context dependent, and is not only determined by specific cell types or differentiation stages but also relies on other regulatory mechanisms, such as DNA and chromatin modifications. Interactions between TFs and their DNA binding sites are critical mediators of phenotypic variation and play important roles in the onset of disease.
View Article and Find Full Text PDFAcute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle.
View Article and Find Full Text PDFCell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstrate that oscillating Delta-like 1 (Dll1) produced by myogenic cells is an indispensable Notch ligand for self-renewal of muscle stem cells in mice.
View Article and Find Full Text PDFSyncytial skeletal muscle cells contain hundreds of nuclei in a shared cytoplasm. We investigated nuclear heterogeneity and transcriptional dynamics in the uninjured and regenerating muscle using single-nucleus RNA-sequencing (snRNAseq) of isolated nuclei from muscle fibers. This revealed distinct nuclear subtypes unrelated to fiber type diversity, previously unknown subtypes as well as the expected ones at the neuromuscular and myotendinous junctions.
View Article and Find Full Text PDFexpression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox - genes in vertebrates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2020
Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin.
View Article and Find Full Text PDFNeuromuscular networks assemble during early human embryonic development and are essential for the control of body movement. Previous neuromuscular junction modeling efforts using human pluripotent stem cells (hPSCs) generated either spinal cord neurons or skeletal muscles in monolayer culture. Here, we use hPSC-derived axial stem cells, the building blocks of the posterior body, to simultaneously generate spinal cord neurons and skeletal muscle cells that self-organize to generate human neuromuscular organoids (NMOs) that can be maintained in 3D for several months.
View Article and Find Full Text PDFKnockout of the ubiquitously expressed miRNA-17∼92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17∼92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17∼92:Bim interactions to the complex miR-17∼92 knockout phenotype, we used a system of conditional mutagenesis of the nine 3' UTR miR-17∼92 seed matches.
View Article and Find Full Text PDFCleavage of amyloid precursor protein (APP) by β-secretase BACE1 initiates the production and accumulation of neurotoxic amyloid-β peptides, which is widely considered an essential pathogenic mechanism in Alzheimer's disease (AD). Here, we report that BACE1 is essential for normal auditory function. Compared with wild-type littermates, BACE1 mice of either sex exhibit significant hearing deficits, as indicated by increased thresholds and reduced amplitudes in auditory brainstem responses (ABRs) and decreased distortion product otoacoustic emissions (DPOAEs).
View Article and Find Full Text PDFFeeding and breathing are essential motor functions and rely on the activity of hypoglossal and phrenic motor neurons that innervate the tongue and diaphragm, respectively. Little is known about the genetic programs that control the development of these neuronal subtypes. The transcription factor Tshz1 is strongly and persistently expressed in developing hypoglossal and phrenic motor neurons.
View Article and Find Full Text PDFRecoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans.
View Article and Find Full Text PDFThe balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD.
View Article and Find Full Text PDF