An efficient and facile method has been developed for the construction of novel P-S-C and P-Se-C bonds by facilitating the three-component cross-coupling reaction of P-H bonds with elemental sulfur/selenium and vinylsulfonium salts, utilizing sodium bicarbonate as a base. This approach eliminates the need for the use of toxic and odorous active sulfur/selenium reagents and noble metals, thereby offering a new pathway for synthesizing -phosphinothioates and -phosphinoselenoates via the organic conversion of inorganic sources. The reaction has showcased remarkable versatility in terms of substrate applicability, particularly for organophosphorus compounds containing P-H bonds and vinylsulfonium salt derivatives.
View Article and Find Full Text PDFPhosphite antioxidants exhibit superior anti-aging and color-stabilizing properties when incorporated into polymer materials. Their synergistic antioxidative effects are particularly noteworthy when used in combination with hindered phenol antioxidants and other primary antioxidants, serving as effective secondary antioxidants, displaying noteworthy synergistic antioxidation effects. This review systematically classifies the synthetic methods for phosphite antioxidants into three distinct categories based on the types of starting materials: synthesis from phosphorus trichloride, phosphorus-containing esters, and white phosphorus.
View Article and Find Full Text PDFA visible-light-induced radical cascade regioselective acylation/cyclization of 1,7-dienes with acyl oxime esters for the preparation of acylation polycyclic compounds via NCR-mediated C-C σ-bond cleavage is established. The transformation involves the cleavage of the C-C σ-bond in acyl oxime esters and selective addition of the electron neutral C═C bonds in 1,7-dienes for the synthesis of acyl polycyclic quinolinone derivatives, not the traditional seven-membered ring products. The strategy offers several advantages, including broad substrate tolerance, no need for bases, hyperstoichiometric radical initiators, and other auxiliaries.
View Article and Find Full Text PDFA convenient method for oxidant-promoted radical cascade acylation or decarbonylative alkylation of 1,7-dienes with aldehydes has been established. This method allows for the rapid construction of N-containing polycyclic skeletons in a highly regio- and stereoselective manner. This transformation provides a simple and efficient method for the preparation of a range of tetrahydro-6-indeno[2,1-]quinolinone derivatives by sequential formation of three new carbon-carbon bonds.
View Article and Find Full Text PDFAn oxidant-assisted tandem sulfonylation/cyclization of electron-deficient alkenes with 4-alkyl-substituted Hantzsch esters and NaSO for the preparation of 3-alkylsulfonylated oxindoles under mild conditions in the absence of a photocatalyst and transition metal catalyst is established. The mechanism studies show that the alkyl radicals, which come from the cleavage of the C-C bond in 4-substituted Hantzsch esters under oxidant conditions, subsequently undergo the insertion of sulfur dioxide to generate the crucial alkylsulfonyl radical intermediates. This three-component reaction provides an efficient and facile route for the construction of alkylsulfonylated oxindoles and avoids the use of highly toxic alkylsulfonyl chlorides or alkylsulfonyl hydrazines as alkylsulfonyl sources.
View Article and Find Full Text PDFOrganophosphorus compounds have long been considered valuable in both organic synthesis and life science. P(III)-nucleophiles, such as phosphites, phosphonites, and diaryl/alkyl phosphines, are particularly noteworthy as phosphorylation reagents for their ability to form new P-C bonds, producing more stable, ecofriendly, and cost-effective organophosphorus compounds. These nucleophiles follow similar phosphorylation routes as in the functionalization of P-H bonds and P-OH bonds.
View Article and Find Full Text PDFA novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR), ArP(OR), and ArP(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level.
View Article and Find Full Text PDFA visible-light-induced radical cyclization reaction of -vinylaryl isocyanides and oxime esters to access various 2,4-disubstituted quinolines was disclosed. Oxime esters were employed as acyl radical precursors the carbon-carbon bond cleavage. It provided an effective way for the synthesis of 2-acyl-4-arlysubstituted quinolines under mild conditions and exhibited good functional group tolerance and substrate applicability.
View Article and Find Full Text PDFIn this study, we present a nickel-catalyzed reductive C(sp)-Sb coupling of unactivated alkyl chlorides with chlorostibines. This approach is highly versatile, tolerating various functional groups such as acetal, alkene, nitrile, amine, ester, silyl ether, thioether, and various heterocyclic compounds. Notably, the late-stage modification of bioactive molecules and the satisfactory anticancer activity against cancerous MDA-MB-231 also demonstrate the potential application.
View Article and Find Full Text PDFWe herein report an efficient photoredox radical cyclization reaction of -vinylaryl isocyanides with acyl chlorides to access a wide range of 2,4-disubstituted quinolines. Preliminary mechanism experiment results suggested that this reaction was initiated by an acyl radical generated from acyl chlorides through a single-electron-transfer (SET) process. This transformation showed good substrate suitability and functional group compatibility at room temperature.
View Article and Find Full Text PDFCyclobutanone oximes and their derivatives are pivotal core structural motifs in organic chemistry. Iminyl-radical-triggered C-C bond cleavage of cyclobutanone oximes delivers an efficient strategy to produce stable distal cyano-substituted alkyl radicals, which can capture SO, CO or O to form cyanoalkylsulfonyl radicals, cyanoalkylcarbonyl radicals or cyanoalkoxyl radicals under mild conditions. In the past several years, cyanoalkylsulfonylation/cyanoalkylcarbonyaltion/cyanoalkoxylation has attracted a lot of interest.
View Article and Find Full Text PDFA simple and efficient method for the ruthenium-catalyzed 1,6-hydroalkylation of -quinone methides (-QMs) with ketones via the activation of C()-H bonds has been disclosed. Without the need for preactivation of the substrates and oxidant, a broad range of -QMs and ketones are well tolerated, producing the expected 1,6-hydroalkylation products with moderate to good yields. Step-by-step control experiments and DFT calculation were conducted systematically to gain insights for the plausible reaction mechanism.
View Article and Find Full Text PDFA simple and efficient method for the synthesis of diarylmethyl-functionalized anilines through the hexafluoroisopropanol (HFIP)-mediated regioselective 1,6-hydroarylation reaction of para-quinone methides (p-QMs) with anilines under catalyst- and additive-free conditions is reported. Various kinds of p-QMs and amines (e. g.
View Article and Find Full Text PDFA copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles the Michaelis-Arbuzov rearrangement for the synthesis of β-ketophosphine oxides, β-ketophosphinates, and β-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired β-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields.
View Article and Find Full Text PDFAn efficient strategy for visible-light-promoted decarboxylative alkylation of vinylcyclopropanes with alkyl -(acyloxy)phthalimide esters through the dual C-C bond and single N-O bond cleavage, employing triphenylphosphine and lithium iodide as the photoredox system to synthesize 2-alkylated 3,4-dihydronaphthalenes, has been established. This alkylation/cyclization involves a radical process and undergoes a sequence of -(acyloxy)phthalimide ester single-electron reduction, N-O bond cleavage, decarboxylative, alkyl radical addition, C-C bond cleavage, and intramolecular cyclization. Moreover, using the photocatalyst Na-Eosin Y instead of triphenylphosphine and lithium iodide, the vinyl transfer products are acquired when vinylcyclobutanes or vinylcyclopentanes are utilized as alkyl radical receptors.
View Article and Find Full Text PDFA visible-light-induced three-component reaction of 2-aryl indoles/benzimidazoles, Hantzsch esters, and sodium pyrosulfite through a radical cascade cyclization process with the insertion of sulfur dioxide is described. It provides a novel and powerful way for the synthesis of alkylsulfonated isoquinolinones. Hantzsch esters and NaSO are employed as alkyl radical precursors and SO surrogate, respectively.
View Article and Find Full Text PDFA mild and efficient Zn(II)-catalyzed regioselective 1,6-hydroarylation of para-quinone methides (p-QMs) with electron-rich arenes protocol is reported. A variety of electron-rich arenes and para-quinone methides are well tolerated under mild conditions, delivering a broad range of triarylmethanes in good to excellent yields. The present method also works well for the hydroarylation of p-QMs with other nucleophiles, such as aniline, indole and phenol derivatives, offering the corresponding triarylmethanes with good yields under the standard conditions.
View Article and Find Full Text PDFA new protocol is herein described for the direct generation of alkylated indolo/benzoimidazo[2,1-]isoquinolin-6(5)-one derivatives by using Hantzsch esters as alkylation radical precursors using a photoredox/KSO system. This oxidative alkylation of active alkenes involves a radical cascade cyclization process and a sequence of Hantzsch ester single electron oxidation, C-C bond cleavage, alkylation, arylation and oxidative deprotonation.
View Article and Find Full Text PDFA Cu-catalyzed oxidative dual arylation of active alkenes the cleavage of two C-N bonds of 3-aminoindazoles is presented for constructing isoquinolinones. Importantly, 3-aminoindazoles are used as efficient arylating agents through a radical process. This method has a good substrate scope and functional group compatibility.
View Article and Find Full Text PDFA visible-light-induced four-component reaction of vinylcyclopropanes, -(acyloxy)phthalimide esters, ,-dimethylformamide (DMF), and HO through an oxidative ring opening of cyclopropane is presented. This procedure provides a new and effective way to construct formate esters. DMF is employed as both a solvent and the source of CHO.
View Article and Find Full Text PDFA method for the preparation of 3-alkylated spiro[4.5]trienones alkylation/ipso-cyclization of activated alkynes with 4-alkyl-DHPs under transition-metal-free conditions is proposed. This alkylation successively undergoes the generation of alkyl radicals, addition of alkyl radicals to the alkynes, and intramolecular ipso-cyclization.
View Article and Find Full Text PDFAn efficient, cheap and green protocol for the highly regioselective 1,6-hydroarylation of para-quinone methides (p-QMs) with indoles at the C-3 position has been established by phosphoric acid catalysis in water under transition-metal-free reaction conditions. A wide range of indole derivatives and para-quinone methides (p-QMs) are compatible for the reaction, affording the corresponding 1,6-hydroarylation products with good to excellent yields. The possible mechanism of the reaction has been explored through step-by-step control experiments.
View Article and Find Full Text PDFHeterocyclic compounds, especially oxygen-containing heterocyclic compounds, are crucial moieties in bioactive compounds and drug leads. Substituted chroman-4-ones are a kind of the most significant structural skeletons. Herein, we report a visible-light-induced dual acylation of alkenes for constructing 3-substituted chroman-4-ones, which undergoes a radical tandem cyclization reaction through carbon-carbon bond cleavage of oxime esters by a nitrogen-centered radical strategy.
View Article and Find Full Text PDFThe transition-metal-free alkylation/cyclization of activated alkenes using Hantzsch ester derivatives as effective alkyl reagents is described. A wide variety of valuable oxindoles was constructed in a single step with excellent selectivity. The reaction occurs through the formation of alkyl radical species followed by the tandem addition/annulation of olefins under oxidative conditions.
View Article and Find Full Text PDF