Grain boundaries (GB) profoundly influence charge transport, and their localized potential barrier with a high density of defect states plays a crucial role in polycrystalline materials. There are a couple of models to estimate the density of states (DoS) of nanostructured materials in field-effect transistors (FETs) that probe interface traps between the semiconductor and dielectric but not at the grain boundaries. Here, we report on utilizing Levinson's and Seto's models of grain boundary transport and correlate them with the temperature-dependent hopping transport in copper iodide (CuI) polycrystalline nanoribbon (PNR) FETs.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
June 2021
We analyze intermittency in intensity and fluorescence lifetime of CsPbBr perovskite quantum dots by applying unbiased Bayesian inference analysis methods. We apply change-point analysis (CPA) and a Bayesian state clustering algorithm to determine the timing of switching events and the number of states between which switching occurs in a statistically unbiased manner, which we have benchmarked particularly to apply to highly multistate emitters. We conclude that perovskite quantum dots display a plethora of gray states in which brightness, broadly speaking, correlates inversely with decay rate, confirming the multiple recombination centers model.
View Article and Find Full Text PDFFano resonances and Rabi splittings are routinely reported in the scientific literature. Asymmetric resonance lineshapes are usually associated with Fano resonances, and two split peaks in the spectrum are often attributed to a Rabi splitting. True Fano resonances and Rabi splittings are unequivocal signatures of coherent coupling between subsystems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
The use of colloidal self-assembly to form the complex multiscale patterns in many optoelectronic devices has been a long-standing dream of the nanoscience community. While great progress has been made using charged colloids in polar solvents, controlled assembly from nonpolar solvents is much more challenging. The major challenge is colloidal clustering caused by strong van der Waals (vdW) attraction between long-chain surface capping ligands passivating the surface of nanocrystals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Monodisperse trimetallic AuCuSn nanocubes are reported where Sn and Cu are inserted into the crystal lattice following co-precipitation protocols along with Au. These trimetallics are explored further towards catalytic hydrazine electrooxidation and their enhanced catalytic activity compared with their bimetallic counterpart AuCu is reported.
View Article and Find Full Text PDFThe classical mechanism of crystal growth for architecting different nanomaterials in solution, although widely studied, is mainly restricted to binary semiconductor systems. However, this method is not applicable to multinary nanomaterials, which have multivalent cations possessing different reactivity under identical reaction conditions. Hence, the shape architectures of these nanostructures, which require a more sophisticated approach, remain relatively unexplored compared to those of binary semiconductors.
View Article and Find Full Text PDFDoping foreign impurities in host nanomaterials can induce new materials properties. In addition, doping can also influence the crystallization process and change the shape and/or phase of the host material. While dopant-induced changes in the properties of materials have been well studied, the concept of doping and its chemistry in the design of different nanostructures has rarely been investigated.
View Article and Find Full Text PDFProgramming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet.
View Article and Find Full Text PDFImplementing the solution chemistry, herein, we report the sealing of both ends of Sb2 S3 semiconductor nanotubes following the diffusion-controlled deposition of the sealing material, AgSbS2 . As a consequence, unique dumbbell-shaped hollow nanocapsules having a binary-ternary epitaxial heterojunction were formed in solution. Whereas these capsule-shaped nanostructures were obtained by the introduction of Ag(0) nanocrystals just after the formation of Sb2 S3 nanotubes, the addition of Ag(0) at the beginning of the process, prior to the formation of nanotubes, changed the growth pattern, and solid nanorods of Sb2 S3 were formed.
View Article and Find Full Text PDFBy programming the synthetic reaction chemistry, stable blue emitting Cu(i) or Ag(i) doped Al(iii) co-doped ZnS (Al,Cu:ZnS or Al,Ag:ZnS) semiconductor nanocrystals are designed. Further, the photostability of the obtained intense blue-violet emission is studied, and the effects of doping/co-doping are correlated. Finally, it is revealed that the strong binding surface ligand 1-dodecanethiol and Al(iii) co-doping play pivotal roles in achieving such stable blue emitting doped nanocrystals.
View Article and Find Full Text PDFHow efficient could a superionic conductor catalyst be? Beyond the traditionally used molecular precursors when the solution dispersed solid nanomaterials of variable size, shape and phase are introduced under certain reaction condition; the catalyst is found to digest all these structures in minutes irrespective of their phase and morphology, resulting unique heteronanowires. This has been inspected here by employing different ZnSe nanostructures as precursor for Ag2Se nanocrystal catalyst in its superionic conductor phase to obtain the Ag2Se-ZnSe heteronanowires. This dissolution and formation process of these nanostructures is correlated with the change in the reaction temperature profile, the phase of the catalyst, the shape/phase and surface ligands of the source nanostructures, and the possible mechanism of the unique heteronanowires growth has been investigated.
View Article and Find Full Text PDFPhoto-oxidation of semiconductor quantum dots is the prime concern during their processability, as it often induces nonradiative states and quenches the band edge excitonic emission. Nevertheless, similar effects have been observed for light emitting doped semiconductor nanocrystals, and the dopant emissions are also quenched due to the surface oxidation. This is more pronounced for selenide-based host semiconductors.
View Article and Find Full Text PDF