Publications by authors named "Biplab Ghosh"

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.

View Article and Find Full Text PDF

In this study, we developed a solid-state atomic replacement method for metal catalysts, enabling the exchange of metal atoms between single atoms and nanoalloys to create new combinations of nanoalloys and single atoms. We observed that partial metal interchange occurred between the RuNi nanoalloy and Zn from the zeolitic imidazolate framework-8 (ZIF-8) on a carbon-nitrogen framework (CNF) at a high temperature of 900 °C, leading to the creation of RuZn nanoparticles and single nickel atoms (Ni-CN). Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analyses revealed that Ni is atomically dispersed within (RuZn)/Ni-CN.

View Article and Find Full Text PDF

This study investigated the dissolution behavior of l-isoleucine and l-serine in an aqueous salt solution (ammonium chloride), examining how variations in temperature and electrolyte concentration affect their solubility. We conducted careful experiments and used mathematical calculations to explore interactions at a molecular level. We observed that the structure of these amino acids and salt concentration in the aqueous medium influence their interactions, which affects dissolution.

View Article and Find Full Text PDF

Unlabelled: In the aquaculture sector, one of the challenges includes disease outbreaks such as bacterial infections, particularly from (), impacting both wild and farmed fish. In this study, we conducted a proteomic analysis of the intestinal tissue in following infection to elucidate the protein alterations and its implications for immune response. Our findings indicate significant dysregulation in extracellular matrix (ECM)-associated proteins during infection, with increased abundance of elastin and collagen alpha-3(VI).

View Article and Find Full Text PDF

Chemoselective monoborylation of methane in high yield is a grand challenge. We have developed a metal-organic framework confined pyridylimine-iridium hydride catalyst, which is efficient in methane C-H borylation using bis(pinacolato)diboron to afford methyl boronic acid pinacol ester in 98% GC-yield at 130 °C with a TON of 196. Mechanistic investigation suggests the oxidative addition of methane to Ir(Bpin)(H) species to form Ir(Bpin)(CH)(H) as the turnover limiting step.

View Article and Find Full Text PDF

Sugar phosphates are potential sources of carbon and phosphate for bacteria. Despite that the process of internalization of Glucose-6-Phosphate (G6P) through plasma membrane remained elusive in several bacteria. VCA0625-27, made of periplasmic ligand binding protein (PLBP) VCA0625, an atypical monomeric permease VCA0626, and a cytosolic ATPase VCA0627, recently emerged as hexose-6-phosphate uptake system of Vibrio cholerae.

View Article and Find Full Text PDF

Amino acid propensities for protein secondary structures are vital for protein structure prediction, understanding folding, and design, and have been studied using various theoretical and experimental methods. Traditional assessments of average propensities using statistical methods have been done on relatively smaller dataset for only a few secondary structures. They also involve averaging out the environmental factors and lack insights into consistency of preferences across diverse protein structures.

View Article and Find Full Text PDF

Herein, we report the uranyl sensitization of Sm emissions in uranium-codoped LiBO:Sm phosphor. The uranyl speciation in codoped [Sm, U] LTB samples was determined by synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy that revealed two coordination shells for U(VI) ions with bond distances of U-O (∼1.81 Å) and U-O (∼2.

View Article and Find Full Text PDF

The COVID-19 pandemic has been driven by the emergence of SARS-CoV-2 variants with mutations across all the viral proteins. Although mutations in the spike protein have received significant attention, understanding the prevalence and potential impact of mutations in other viral proteins is essential for comprehending the evolution of SARS-CoV-2. Here, we conducted a comprehensive analysis of approximately 14 million sequences of SARS-CoV-2 deposited in the GISAID database until December 2022 to identify prevalent mutations in the non-spike proteins at the global and country levels.

View Article and Find Full Text PDF

Reducing nitro compounds to amines is a fundamental reaction in producing valuable chemicals in industry. Herein, the synthesis and characterization of a zirconium metal-organic framework-supported salicylaldimine-cobalt(II) chloride (salim-UiO-CoCl) and its application in catalytic reduction of nitro compounds are reported. Salim-UiO-Co displayed excellent catalytic activity in chemoselective reduction of aromatic and aliphatic nitro compounds to the corresponding amines in the presence of phenylsilane as a reducing agent under mild reaction conditions.

View Article and Find Full Text PDF

The detection and discrimination of Fe and Fe ions have been investigated using a simple probe (L), produced by the condensation of ethylenediamine and 3-ethoxysalicyaldehyde. Single crystal X-ray structures demonstrate that L interacts with Fe and Fe. In aqueous-DMSO media, the L recognises AsO by fluorescence and colorimetry techniques.

View Article and Find Full Text PDF

In Vibrio cholerae, the master regulator FlrA controls transcription of downstream flagellar genes in a σ -dependent manner. However, the molecular basis of regulation by VcFlrA, which contains a phosphorylation-deficient N-terminal FleQ domain, has remained elusive. Our studies on VcFlrA, four of its constructs, and a mutant showed that the AAA domain of VcFlrA, with or without the linker 'L', remains in ATPase-deficient monomeric states.

View Article and Find Full Text PDF

Aeromonas hydrophila (Ah) is a Gram-negative bacterium and a serious global pathogen causing Motile Aeromonas Septicaemia (MAS) in fish leading to global loss in aquaculture. Investigation of the molecular alterations of host tissues such as liver could be a powerful approach to identify mechanistic and diagnostic immune signatures of disease pathogenesis. We performed a proteomic analysis of Labeo rohita liver tissue to examine the protein dynamics in the host cells during Ah infection.

View Article and Find Full Text PDF

Semiconducting nanomaterials have been widely explored in diverse optoelectronic applications. Colloidal lead halide perovskite nanocrystals (NCs) have recently been an excellent addition to the field of nanomaterials, promising an enticing building block in the field of light emission. In addition to the notable optoelectronic properties of perovskites, the colloidal NCs exhibit unique size-dependent optical properties due to the quantum size effect, which makes them highly attractive for light-emitting diodes (LEDs).

View Article and Find Full Text PDF

Heme internalization by pathogenic bacteria inside a human host to accomplish the requirement of iron for important cellular processes is of paramount importance. Despite this, the mechanism of heme import by the ATP-binding-cassette (ABC) transporter HutCD in Vibrio cholerae remains unexplored. We have performed biochemical studies on ATPase HutD and its mutants, along with molecular modelling, docking and unbiased all-atom MD simulations on lipid-solvated models of permease-ATPase complex HutCD.

View Article and Find Full Text PDF

Labeo rohita (Rohu) is one of the most important fish species produced in world aquaculture. Integrative omics research provides a strong platform to understand the basic biology and translate this knowledge into sustainable solutions in tackling disease outbreak, increasing productivity and ensuring food security. Mass spectrometry-based proteomics has provided insights to understand the biology in a new direction.

View Article and Find Full Text PDF

With fascinating photophysical properties and a strong potential to utilize solar energy, metal halide perovskites (MHPs) have become a prominent feature within photocatalysis research. However, the effectiveness of single MHP photocatalysts is relatively poor. The introduction of a second component to form a heterojunction represents a well-established route to accelerate carrier migration and boost reaction rates, thus increasing the photoactivity.

View Article and Find Full Text PDF

Extending halide perovskites' optoelectronic properties to stimuli-responsive chromism enables switchable optoelectronics, information display, and smart window applications. Here, we demonstrate a band gap tunability (chromism) via crystal structure transformation from three-dimensional FAPbBr to a ⟨110⟩ oriented FAPbBr structure using a mono-halide/cation composition (FA/Pb) tuning. Furthermore, we illustrate reversible photochromism in halide perovskite by modulating the intermediate phase in the FAPbBr structure, enabling greater control of the optical band gap and luminescence of a ⟨110⟩ oriented mono-halide/cation perovskite.

View Article and Find Full Text PDF

Protein function is encoded in its sequence, manifested in its three-dimensional structure, and facilitated by its dynamics. Studies have suggested that protein structures with higher sequence similarity could have more similar patterns of dynamics. However, such studies of protein dynamics within and across protein families typically rely on coarse-grained models, or approximate metrics like crystallographic B-factors.

View Article and Find Full Text PDF

Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce.

View Article and Find Full Text PDF

VpsR, the master regulator of biofilm formation in Vibrio cholerae, is an atypical NtrC1 type bEBP lacking residues essential for σ-RNAP binding and REC domain phosphorylation. Moreover, transcription from P, a promoter of biofilm biosynthesis, has been documented in presence of σ-RNAP/VpsR/c-di-GMP complex. It was proposed that c-di-GMP and VpsR together form an active transcription complex with σ-RNAP.

View Article and Find Full Text PDF

Gene encoding aspartyl dipeptidase from Xenopus levies (PepExl) is upregulated by thyroid hormone and is proposed to play a significant role in resorption of tadpole tail during metamorphosis. However, the importance of peptidase activity for the resorption of the tail remain elusive. Here we report the crystal structures of first eukaryotic S51 peptidase, PepExl, in its ligand-free and Asp-bound states at 1.

View Article and Find Full Text PDF

Uropathogenic Escherichia coli (UPECs) are the predominant cause of asymptomatic bacteriuria (ABU) and symptomatic UTI. In this study, multidrug-resistant (MDR) ABU-UPECs from hospitalized patients of Kolkata, India, were characterized with respect to their ESBL phenotype, acquisition of β-lactamase genes, mobile genetic elements (MGEs), phylotype property, ERIC-PCR profile, sequence types (STs), clonal complexes (CCs) and evolutionary and quantitative relationships and compared to the symptomatic ones to understand their epidemiology and evolutionary origin. Statistically significant incidence of ESBL producers, β-lactamase genes, MGEs and novel phylotype property (NPP) among ABU-UPECs similar to the symptomatic ones indicated the probable incidence of chromosomal plasticity on resistance gene acquisition through MGEs due to indiscriminate drug usage.

View Article and Find Full Text PDF

The bacterial enhancer-binding protein (bEBP) FlrC, controls motility and colonization of by regulating the transcription of class-III flagellar genes in σ-dependent manner. However, the mechanism by which FlrC regulates transcription is not fully elucidated. Although, most bEBPs require nucleotides to stimulate the oligomerization necessary for function, our previous study showed that the central domain of FlrC (FlrC) forms heptamer in a nucleotide-independent manner.

View Article and Find Full Text PDF

Cholera is caused by and is an example of a blood-group-dependent disease. Recent studies suggest that the receptor-binding B subunit of the cholera toxin (CT) binds histo-blood group antigens at a secondary binding site. Herein, we studied the conformational dynamics of Lewis Y (Le) oligosaccharides, H-tetrasaccharides and A-pentasaccharides, in aqueous solution by conducting accelerated molecular dynamics (aMD) simulations.

View Article and Find Full Text PDF