Noncompetitive carbon sources such as algae are unconventional and promising raw material for sustainable biofuel production. The capability of one marine bacterium, Saccharophagus degradans 2-40 to degrade red seaweed Gelidium amansii for production of polyhydroxyalkanoates (PHA) was evaluated in this study. S.
View Article and Find Full Text PDFNanoparticles, the elementary structures of nanotechnology, are important materials for fundamental studies and variety of applications. The different sizes and shapes of these materials exhibit unique physical and chemical properties than their bulk materials. There is a great interest in obtaining well-dispersed, ultrafine, and uniform nanoparticles to delineate and utilize their distinct properties.
View Article and Find Full Text PDFMosquitoes spread lethal diseases like malaria and dengue fever to humans. Considering mosquito vector control as one of the best alternatives to reduce new infections, here we have analyzed the effect of purified pigment prodigiosin extracted from Serratia marcescens (NMCC 75) against larval and pupal stages of Aedes aegypti and Anopheles stephensi mosquitoes. Mosquito larvicidal activities of purified prodigiosin revealed LC50 values of 14 ± 1.
View Article and Find Full Text PDFManganese dioxide (MnO₂) nanoparticles were synthesised by the reduction of potassium permanganate (KMnO₄) using Kalopanax pictus leaf extract at room temperature. A transparent dark-brown colour appeared after the addition of K. pictus leaf extract to the solution of permanganate.
View Article and Find Full Text PDFBioprocessing of lignocellulose as a renewable resource for fuels, chemicals or value added products is a necessity to fulfil demands of petroleum products. This study aims to convert corn stover to polyhydroxyalkanoates (PHA). Corn stover was hydrolyzed to crude sugars by an on-site prepared cellulase cocktail from co-culture of Trichoderma reesei and Aspergillus niger.
View Article and Find Full Text PDFEnzyme Microb Technol
September 2015
Screening of microorganisms capable of producing alginate lyase enzyme is commonly carried out by investigating their abilities to grow on alginate-containing solid media plates and occurrence of a clearance zone after flooding the plates with agents such as 10% (w/v) cetyl pyridinium chloride (CPC), which can form complexes with alginate. Although the CPC method is good, advantageous, and routinely used, the agar in the media interferes with the action of CPC, which makes judgment about clearance zones very difficult. In addition, this method takes a minimum of 30 min to obtain the zone of hydrolysis after flooding and the hydrolyzed area is not sharply discernible.
View Article and Find Full Text PDFMicroorganisms are one of the most attractive and simple sources for the synthesis of different types of metal nanoparticles. The synthesis of manganese dioxide nanoparticles (MnO2 NPs) by microorganisms from reducing potassium permanganate was investigated for the first time in the present study. The microbial supernatants of the bacterium Saccharophagus degradans ATCC 43961 (Sde 2-40) and of the yeast Saccharomyces cerevisiae showed positive reactions to the synthesis of MnO2 NPs by displaying a change of color in the permanganate solution from purple to yellow.
View Article and Find Full Text PDFBackground: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi.
Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay.
In the present study, a rapid, low-cost, and ecofriendly method of stable silver nanoparticles (AgNPs) synthesis using leaves extract of Ficus carica (F. carica), a plant with diverse metabolic consortium, is reported for the first time. An absorption peak at 422 nm in UV-Vis spectroscopy, a spherical shape with an average size of 21 nm in transmission electron microscopy, and crystalline nature in X-ray powder diffraction studies were observed for the synthesized AgNPs.
View Article and Find Full Text PDFNanoparticles have emerged as a promising analytical tool for monitoring food adulteration and safety. In the present study, silver nanoparticles (AgNPs) were synthesized using leaves' extract of Jatropha gossypifolia. AgNPs revealed a characteristic surface plasmon resonance (SPR) peak at 419 nm and have spherical and grain shape with size range between 18 and 30 nm.
View Article and Find Full Text PDFA contaminating bacterium growing along with the stock culture of Saccharophagus degradans ATCC 43961 (Sde 2-40) on marine agar plate was isolated and investigated for its ability to produce polyhydoxyalkonates (PHA). Preliminary screening by Sudan black B and Nile blue A staining indicated positive characteristic of the isolate to produce PHA. The isolate was able to grow and produce PHA in minimal sea salt medium broth.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) were synthesised using Kalopanax septemlobus plant leaf extracts. UV-visible spectrophotometric, Fourier-transform infrared, electron dispersive X-ray spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirmed synthesis of AgNPs. TEM micrographs revealed presence of well-dispersed AgNPs predominantly of small size and different shapes with an average particle size of 30.
View Article and Find Full Text PDFSafe and eco-friendly alternatives to currently used hazardous chemico-physical methods of silver nanoparticles (AgNPs) synthesis are need of time. Rapid, low cost, selective detection of toxic metals in environmental sample is important to take safety action. Toxicity assessment of engineered AgNPs is essential to avoid its side effects on human and non-target organisms.
View Article and Find Full Text PDFEfficacy of Serratia marcescens for pigment production and biological activity was investigated. Natural substrates like sweet potato, mahua flower extract (Madhuca latifolia L.), and sesam at different concentrations were taken.
View Article and Find Full Text PDFUses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract.
View Article and Find Full Text PDFNowadays, increasing use of nanoproducts in area of human and environmental applications raises concern about safety aspects of nanoparticles synthesized using traditional physicochemical methods. Silver nanoparticles (AgNPs) synthesis at ambient parameters using latex of medicinally important plant Jatropha gossypifolia (J. gossypifolia) is reported in the present study.
View Article and Find Full Text PDFIn the present study, stable silver nanoparticles (AgNPs) were fabricated at a rapid rate from leaf extract of medicinally important plant Alstonia macrophylla. Biosynthesized AgNPs are of spherical shape and narrow size (70 nm), exhibiting a surface plasmon resonance peak at 435 nm, and a zeta potential of -30.8 mV and have a crystalline nature.
View Article and Find Full Text PDFMosquitoes are known for acquiring resistance against insecticides in many ways, namely target side mutation, enzyme modification, sequestration, quick elimination, etc. But, the role of microflora present in abundance in the larval midgut is less explored with respect to their role in insecticide resistance. During the course of their development, mosquitoes are continuously exposed to microbes and have naturally acquired midgut microbial flora.
View Article and Find Full Text PDFBacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.
View Article and Find Full Text PDFThe synthesis of well-dispersed and ultrafine metal nanoparticles has great interest due to their distinctive physicochemical properties and biomedical applications. This study is the first report of one-step solvent-free synthesis of AgNPs using Euphorbiaceae plant latex. Among evaluated eight latex-producing plants, four (Jatropha curcas, Jatropha gossypifolia, Pedilanthus tithymaloides, and Euphorbia milii) showed high potential to produce physicochemically distinct, small-sized and bactericidal AgNPs.
View Article and Find Full Text PDFMembers of the genus Wolbachia are intracellular bacteria that are widespread in arthropods and establish diverse symbiotic associations with their hosts, ranging from mutualism to parasitism. Here we present the first detailed analyses of Wolbachia in butterflies from India with screening of 56 species. Twenty-nine species (52%) representing five families were positive for Wolbachia.
View Article and Find Full Text PDFIn present study, the bioactivity of latex-producing plant Pergularia daemia as well as synthesized silver nanoparticles (AgNPs) against the larval instars of Aedes aegypti and Anopheles stephensi mosquito larvae was determined. The range of concentrations of plant latex (1,000, 500, 250, 125, 62.25, and 31.
View Article and Find Full Text PDFIn the present study activity of silver nanoparticles (AgNPs) synthesized using Plumeria rubra plant latex against second and fourth larval instar of Aedes aegypti and Anopheles stephensi was determined. Range of concentrations of synthesized AgNps (10, 5, 2.5, 1.
View Article and Find Full Text PDFThe tremendous worldwide efforts to isolate novel mosquito larvicidal bacteria with improved efficacy present significant promise to control vector-borne diseases of public health importance. In the present study, two native bacterial isolates, Bacillus thuringiensis (Bt SV2) and Serratia species (SV6) were evaluated for mosquito larvicidal potential against the early fourth instar larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus with reference to B. thuringiensis subsp.
View Article and Find Full Text PDFDevelopment of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. Biological systems provide a useful option to achieve this objective. In this study, potent fungal strain was selectively isolated from soil samples on silver supplemented medium, followed by silver tolerance (100-1,000 ppm) test.
View Article and Find Full Text PDF