Several strategies have been adopted to design an artificial light-harvesting system in which light energy is captured by peripheral chromophores and it is subsequently transferred to the core via energy transfer. A composite of carbon dots and dye-encapsulated BSA-protein-capped gold nanoclusters (AuNCs) has been developed for efficient light harvesting and white light generation. Carbon dots (C-dots) act as donor and AuNCs capped with BSA protein act as acceptor.
View Article and Find Full Text PDFMetal cluster-semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic, photovoltaic and light harvesting devices because metal nanoclusters and semiconductor QDs are promising candidates for photon harvesting. Here, we have designed well defined metal cluster-semiconductor nanostructures using different surface capped negatively charged Au25 nanoclusters (Au NCs) and positively charged cysteamine capped CdTe quantum dots using electrostatic interactions. The main focus of this article is to address the impact of surface capping agents on the photophysical properties of Au cluster-CdTe QD hybrid nanocomposites.
View Article and Find Full Text PDFA single probe of an Au nanocluster-CdTe quantum dots nanocomposite has been developed by using tripeptide-capped CdTe quantum dots (QD) and bovine serum albumin (BSA) protein-conjugated Au25 nanocluster (NC) for detection of both Hg(2+) ion and F(-) ion. The formation of Au-NC-CdTe QD nanocomposite has been confirmed by TEM, steady state and time resolved spectroscopy, CD and FTIR studies. A significant signal off (74 % PL quenching at 553 nm) phenomenon of this nanocomposite is observed in presence of 6.
View Article and Find Full Text PDFConsiderable attention has been paid to hybrid organic-inorganic nanocomposites for designing new optical materials. Herein, we demonstrate the energy and hole transfer of hybrid hole-transporting α-sexithiophene (α-STH) nanoparticle-CdTe quantum dot (QD) nanocomposites using steady-state and time-resolved spectroscopy. Absorption and photoluminescence studies confirm the loss of planarity of the α-sexithiophene molecule due to the formation of polymer nanoparticles.
View Article and Find Full Text PDF