Publications by authors named "Binzhu Liu"

Since the exosomal protein level is related to many diseases, sensitive detection of exosomal protein is highly desirable. Here, we describe a polymer-sorted high-purity semiconducting carbon nanotubes (CNTs) films-based field-effect transistor (FET) biosensor for ultrasensitive and label-free detection of MUC1, a transmembrane protein highly expressed in breast cancer exosomes. Polymer-sorted semiconducting CNTs hold advantages including high purity (>99%), high CNT concentration, and short processing time (<1 h), but they are difficult to be stably functionalized with biomolecules because of lacking hanging bonds on their surface.

View Article and Find Full Text PDF

Local pH of the brain microenvironment is a prominent indicator for assessing health status and is closely related to many diseases; therefore, the development of effective in vivo pH methods is of great importance. This work demonstrates a dual-needle biosensor based on a solution-gate field-effect transistor (FET) for selective and sensitive monitoring of pH in cerebrospinal fluid in the central nervous system. The sensor consists of two parts: a needle FET modified with high-purity carbon nanotubes for electrical signal conduction and a needle gate modified with polyaniline for specific pH response.

View Article and Find Full Text PDF

Chemical communication via neurotransmitters is central to brain functions. Nevertheless, in vivo real-time monitoring of neurotransmitters released in the brain, especially the electrochemically inactive molecules, remains a great challenge. In this work, a novel needle field-effect transistor (FET) microsensor based on an acupuncture needle is proposed, which is demonstrated to be capable of real-time monitoring dopamine molecules as well as neuropeptide Y in vivo.

View Article and Find Full Text PDF

The external acid environment of cancer cells is different from that of normal cells, making a profound impact on cancer progression. Here we report a simple poly-l-lysine-modified graphene field-effect transistor (PLL@G-FET) for in situ monitoring of extracellular acidosis around cancer cells. PLL is a well-known material with good biocompatibility and is rich in amino groups that are sensitive to hydrogen ions.

View Article and Find Full Text PDF