Publications by authors named "Binzhi Liu"

Antiferroelectric ceramics, via the electric-field-induced antiferroelectric (AFE)-ferroelectric (FE) phase transitions, show great promise for high-energy-density capacitors. Yet, currently, only 70-80% energy release is found during a charge-discharge cycle. Here, for PbZrO-based oxides, geometric nonlinear theory of martensitic phase transitions is applied (first used to guide supercompatible shape-memory alloys) to predict the reversibility of the AFE-FE transition by using density-functional theory to assess AFE/FE interfacial lattice-mismatch strain that assures ultralow electric hysteresis and extended fatigue lifetime.

View Article and Find Full Text PDF

Defects are essential to engineering the properties of functional materials ranging from semiconductors and superconductors to ferroics. Whereas point defects have been widely exploited, dislocations are commonly viewed as problematic for functional materials and not as a microstructural tool. We developed a method for mechanically imprinting dislocation networks that favorably skew the domain structure in bulk ferroelectrics and thereby tame the large switching polarization and make it available for functional harvesting.

View Article and Find Full Text PDF