Publications by authors named "Binz S"

Background: Elevated blood pressure (BP) is pervasive among patients that visit emergency departments (EDs) for their care.

Methods: In this review article, we outline the current approach to the management of these individuals and highlight the crucial role emergency medicine clinicians play in reducing the morbidity associated with elevated BP.

Results: We highlight the critical importance of immediate treatment when elevated BP contributes to new or worsening end-organ injury but emphasize that such hypertensive emergencies are rare.

View Article and Find Full Text PDF

Background: Portal venous gas has mainly been studied in pediatrics and seen in cases of necrotizing enterocolitis. It is a rare finding in adults and is typically associated with underlying intestinal ischemia or other malignant intra-abdominal pathology. Portal venous gas is seen more readily on ultrasound compared to radiographs in both pediatric and adult patients.

View Article and Find Full Text PDF
Article Synopsis
  • Mobile health (mHealth) has the potential to improve healthcare decision-making in underserved communities, and a study was conducted to assess the readiness of these populations to use such technology.
  • A survey of 560 low-acuity patients revealed that 96% had cellular internet access, with many willing to use mHealth tools for medical guidance, although access to traditional healthcare services varied by factors like age and gender.
  • Most participants indicated they would opt for outpatient care over emergency department visits if an mHealth tool assessed their issue as low risk, highlighting a significant openness to mHealth for medical triage in the community.
View Article and Find Full Text PDF

A key trend in the 210-million-year-old history of modern turtles was the evolution of shell kinesis, that is, shell movement during neck and limb retraction. Kinesis is hypothesized to enhance predator defense in small terrestrial and semiaquatic turtles and has evolved multiple times since the early Cretaceous. This complex phenotype is nonfunctional and far from fully differentiated following embryogenesis.

View Article and Find Full Text PDF

Chronic cannabis use has become prevalent with decriminalization, medical prescription, and recreational legalization in numerous US states. With this increasing incidence of chronic cannabis use a new clinical syndrome has become apparent in emergency departments and hospitals across the country, termed Cannabinoid Hyperemesis (CH). CH has been described as cyclical vomiting and abdominal pain in the setting of chronic cannabis use, which is often temporarily relieved by hot showers.

View Article and Find Full Text PDF

Trauma-induced coagulopathy (TIC) is a recently described condition which traditionally has been diagnosed by the common coagulation tests (CCTs) such as prothrombin time/international normalized ratio (PT/INR), activated partial thromboplastin time (aPTT), platelet count, and fibrinogen levels. The varying sensitivity and specificity of these CCTs have led trauma coagulation researchers and clinicians to use Viscoelastic Tests (VET) such as Thromboelastography (TEG) to provide Targeted Thromboelastographic Hemostatic and Adjunctive Therapy (TTHAT) in a goal directed fashion to those trauma patients in need of hemostatic resuscitation. This review describes the utility of VETs, in particular, TEG, to provide TTHAT in trauma and acquired non-trauma-induced coagulopathy.

View Article and Find Full Text PDF

This paper reviews the application of tranexamic acid, an antifibrinolytic, to trauma. CRASH-2, a large randomized controlled trial, was the first to show a reduction in mortality and recommend tranexamic acid use in bleeding trauma patients. However, this paper was not without controversy.

View Article and Find Full Text PDF

DNA polymerase ζ (Pol ζ) and Rev1 are key players in translesion DNA synthesis. The error-prone Pol ζ can also participate in replication of undamaged DNA when the normal replisome is impaired. Here we define the nature of the replication disturbances that trigger the recruitment of error-prone polymerases in the absence of DNA damage and describe the specific roles of Rev1 and Pol ζ in handling these disturbances.

View Article and Find Full Text PDF

The understanding of metal nucleation on graphene is essential for promising future applications, especially of magnetic metals which can be used in spintronics or computer storage media. A common method to study the grown morphology is to measure the nucleated island density n as a function of growth parameters. Surprisingly, the growth of Fe on graphene is found to be unusual because it does not follow classical nucleation: n is unexpectedtly high, it increases continuously with the deposited amount θ and shows no temperature dependence.

View Article and Find Full Text PDF

We study the Pb growth on both √3 × √3-In and 4 × 1-In reconstructed Si(111) surfaces at room and low temperature (160 K). The study takes place with complementary techniques, to investigate the role of the substrate reconstruction and temperature in determining the growth mode of Pb. Specifically, we focus on the correlation between the growth morphology and the electronic structure of the Pb films.

View Article and Find Full Text PDF

DNA polymerase zeta (Pol ζ) participates in translesion synthesis (TLS) of DNA adducts that stall replication fork progression. Previous studies have led to the suggestion that the primary role of Pol ζ in TLS is to extend primers created when another DNA polymerase inserts nucleotides opposite lesions. Here we test the non-exclusive possibility that Pol ζ can sometimes perform TLS in the absence of any other polymerase.

View Article and Find Full Text PDF

Graphene is a unique 2D system of confined electrons with an unusual electronic structure of two inverted Dirac cones touching at a single point, with high electron mobility and promising microelectronics applications. The clean system has been studied extensively, but metal adsorption studies in controlled experiments have been limited; such experiments are important to grow uniform metallic films, metal contacts, carrier doping, etc. Two non-free-electron-like metals (rare earth Gd and transition metal Fe) were grown epitaxially on graphene as a function of temperature T and coverage θ.

View Article and Find Full Text PDF

Eukaryotic DNA-binding protein replication protein A (RPA) has a strand melting property that assists polymerases and helicases in resolving DNA secondary structures. Curiously, previous results suggested that human RPA (hRPA) promotes undesirable recombination by facilitating annealing of flaps produced transiently during DNA replication; however, the mechanism was not understood. We designed a series of substrates, representing displaced DNA flaps generated during maturation of Okazaki fragments, to investigate the strand annealing properties of RPA.

View Article and Find Full Text PDF

Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes. RPA is composed of three subunits of 70, 32, and 14 kDa. The N-terminal domain of the 70-kDa subunit (RPA70) has weak DNA binding activity, interacts with proteins, and is involved in cellular DNA damage response.

View Article and Find Full Text PDF

In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding.

View Article and Find Full Text PDF

The heterotrimeric checkpoint clamp comprises the Saccharomyces cerevisiae Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans). This DNA damage response factor is loaded onto DNA by the Rad24-RFC (replication factor C-like complex with Rad24) clamp loader and ATP. Although Rad24-RFC alone does not bind to naked partial double-stranded DNA, coating of the single strand with single-stranded DNA-binding protein RPA (replication protein A) causes binding of Rad24-RFC via interactions with RPA.

View Article and Find Full Text PDF

Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein. RPA is conserved in all eukaryotes and is essential for DNA replication, DNA repair, and recombination. RPA also plays a role in coordinating DNA metabolism and the cellular response to DNA damage.

View Article and Find Full Text PDF

Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair).

View Article and Find Full Text PDF

Human replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), eukaryotic single-stranded DNA (ssDNA) binding protein required for DNA recombination, repair, and replication. The three subunits of human RPA are composed of six conserved DNA binding domains (DBDs). Deletion and mutational studies have identified a high-affinity DNA binding core in the central region of the 70 kDa subunit, composed of DBDs A and B.

View Article and Find Full Text PDF

Replication protein A (RPA) is a heterotrimeric (subunits of 70, 32, and 14 kDa) single-stranded DNA-binding protein that is required for DNA replication, recombination, and repair. The 40-residue N-terminal domain of the 32-kDa subunit of RPA (RPA32) becomes phosphorylated during S-phase and after DNA damage. Recently it has been shown that phosphorylation or the addition of negative charges to this N-terminal phosphorylation domain modulates RPA-protein interactions and increases cell sensitivity to DNA damage.

View Article and Find Full Text PDF