Abnormal human immunoglobulin G (IgG) may induce the risk of immune system disorder, infectious diseases, tumors and so on. However, the current detection methods exhibit low sensitivity, which limits their practical application. In this work, an SPR optical fiber sensor (SPR-OFS) with high sensitivity is designed for label-free detection of human IgG.
View Article and Find Full Text PDFBackground: Cobalt, an essential trace element, is vital for maintaining human nervous system function, aiding in DNA synthesis, and contributing to red blood cell production. It is helpful for disease diagnosis and treatment plan evaluation by precisely monitoring its concentration changes in the human body. Despite extensive efforts made, due to its ultra-low concentration, the current limit of detection (LOD) as reported is still inadequate and cannot be satisfied with the precise clinical applications.
View Article and Find Full Text PDFIt is crucial to detect Pb accurately and rapidly. This work proposes an ultra-sensitive optical fiber surface plasmon resonance (SPR) sensor functionalized with glutathione (GSH) for label-free detection of the ultra-low Pb concentration, in which the refractive index (RI) sensitivity of the multimode-singlemode-multimode (MSM) hetero-core fiber is largely enhanced by the gold nanoparticles (AuNPs)/Au film coupling SPR effect. The GSH is modified on the fiber as the sensing probe to capture and identify Pb specifically.
View Article and Find Full Text PDFMaterials (Basel)
February 2023
A coaxial optical fiber interferometer (COFI) is proposed here for ammonia sensing, which comprises two light-carrying single-mode fibers (SMF) fused to a section of no-core fiber (NCF), thus forming an optical interferometer. The outer surface of the COFI is coated with a layer of polyacrylic acid (PAA)/polyaniline (PAni) film. The refractive index (RI) of the sensitive layer varies when PAA/PAni interacts with ammonia, which leads to the resonance wavelength shift.
View Article and Find Full Text PDFThe measurement of pH has received great attention in diverse fields, such as clinical diagnostics, environmental protection, and food safety. Optical fiber sensors are widely used for pH sensing because of their great advantages. In this work, an optical fiber pH sensor is fabricated, by combining the merits of the multimode interference configuration and pH-sensitive polyaniline/polyacrylic acid (PAni/PAA) coatings, which was successfully in situ deposited on the no-core fiber (NCF) by the layer-by-layer (LBL) self-assembly method.
View Article and Find Full Text PDFOptical fiber humidity sensors have sparked enormous interests in many fields because of their excellent features. However, it remains a great challenge to balance sensitivity, humidity response, temperature crosstalk, and wet hysteresis for real-world application. To overcome this trade-off, an optical fiber humidity sensor is developed here by coating functional graphene oxide (GO)/polyelectrolyte nanocomposite film on the excessively tilted fiber grating (ex-TFG), in which GO/polyelectrolyte nanocomposite film is employed for enhancing the hydrophilicity and accelerating the adsorption/desorption of water molecule, while the ex-TFG is utilized for improving the sensitivity of refractive index and eliminating the crosstalk of temperature.
View Article and Find Full Text PDF