Publications by authors named "Binyang Hou"

Yttria-stabilized zirconia (YSZ) is found in a wide range of applications, from solid-oxide fuel cells to medical devices and implants. A molecular-level understanding of the hydration of YSZ surfaces is essential for optimizing its performance and durability in these applications. Nevertheless, only a limited amount of literature is available about the surface hydration of YSZ single crystals.

View Article and Find Full Text PDF

We have investigated the formation of lamellar crystals of poly(vinylidene fluoride) (PVDF) in the presence of oriented clay particles with different aspect ratios (ARs) and surface properties. Hot-melt screw extrusion of PVDF with 5 wt % of montmorillonite (AR ≈ 12) or fluoromica (AR ≈ 27) resulted in formation of phase-separated blends. Replacing the clays with their organoclay derivatives, organomontmorillonite or organofluoromica, resulted in the corresponding intercalated nanocomposites.

View Article and Find Full Text PDF

Correction for 'Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [CCim][NTf]' by Julian Mars et al., Phys. Chem.

View Article and Find Full Text PDF

Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of defects on chemical reactions using two samples: a defect-free NiO film grown on Mg(001) and a defect-containing NiO grown on Ni(110).
  • High-resolution X-ray reflectivity and atomic force microscopy were used to observe changes in surface morphology and interfacial structure in both samples when exposed to water and a lead-containing solution.
  • The defect-free NiO showed minimal changes, while the defect-rich NiO displayed significant alterations, demonstrating the crucial role of defects in the chemical reactions of oxide surfaces.
View Article and Find Full Text PDF

The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species.

View Article and Find Full Text PDF

Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors at Q± = (H ± 0.

View Article and Find Full Text PDF

The electric potential difference across cell membranes, known as the membrane potential, plays an important role in the activation of many biological processes. To investigate the effect of the membrane potential on the molecular ordering of lipids within a biomimetic membrane, a self-assembled monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) lipids at an electrified 1,2-dichloroethane/water interface is studied with X-ray reflectivity and interfacial tension. Measurements over a range of electric potential differences, -150 to +130 mV, that encompass the range of typical biomembrane potentials demonstrate a nearly constant and stable structure whose lipid interfacial density is comparable to that found in other biomimetic membrane systems.

View Article and Find Full Text PDF

Selective extraction of metal ions from a complex aqueous mixture into an organic phase is used to separate toxic or radioactive metals from polluted environments and nuclear waste, as well as to produce industrially relevant metals, such as rare earth ions. Selectivity arises from the choice of an extractant amphiphile, dissolved in the organic phase, which interacts preferentially with the target metal ion. The extractant-mediated process of ion transport from an aqueous to an organic phase takes place at the aqueous-organic interface; nevertheless, little is known about the molecular mechanism of this process despite its importance.

View Article and Find Full Text PDF

We present X-ray reflectivity and interfacial tension measurements of the electrified liquid/liquid interface between two immiscible electrolyte solutions for the purpose of understanding the dependence of interfacial ion distributions on the applied electric potential difference across the interface. The aqueous phase contains alkali-metal chlorides, including LiCl, NaCl, RbCl, or CsCl, and the organic phase is a 1,2-dichloroethane solution of bis(triphenylphosphor anylidene) ammonium tetrakis(pentafluorophenyl)borate (BTPPATPFB). Selected data for a subset of electric potential differences are analyzed to determine the potentials of mean force for Li(+), Rb(+), Cs(+), BTPPA(+), and TPFB(-).

View Article and Find Full Text PDF

Ion distributions play a central role in various settings-from biology, where they mediate the electrostatic interactions between charged biomolecules in solution, to energy storage devices, where they influence the charging properties of supercapacitors. These distributions are determined by interactions dictated by the chemical properties of the ions and their environment as well as the long-range nature of the electrostatic force. Recent theoretical and computational studies have explored the role of correlations between ions, which have been suggested to underlie a number of counterintuitive results, such as like-charge attraction.

View Article and Find Full Text PDF

X-ray reflectivity studies demonstrate the condensation of a monovalent ion at the electrified interface between electrolyte solutions of water and 1,2-dichloroethane. Predictions of the ion distributions by standard Poisson-Boltzmann (Gouy-Chapman) theory are inconsistent with these data at higher applied interfacial electric potentials. Calculations from a Poisson-Boltzmann equation that incorporates a nonmonotonic ion-specific potential of mean force are in good agreement with the data.

View Article and Find Full Text PDF

The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vaporlike depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose superhydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity.

View Article and Find Full Text PDF