The promise of biomolecular computers is their ability to interact with naturally occurring biomolecules, enabling in the future the development of context-dependent programmable drugs. Here we show a context-sensing mechanism of a biomolecular automaton that can simultaneously sense different types of molecules, allowing future integration of biomedical knowledge on a broad range of molecular disease symptoms in the decision of a biomolecular computer to release a drug molecule.
View Article and Find Full Text PDFEarly biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems. Recently, simple molecular-scale autonomous programmable computers were demonstrated allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for 'logical' control of biological processes.
View Article and Find Full Text PDF