The World Health Organization has listed Snakebite Envenoming (SBE) as a priority neglected tropical disease, with a worldwide annual snakebite affecting 5.4 million people and injuring 2.7 million lives.
View Article and Find Full Text PDFMetal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control.
View Article and Find Full Text PDFSnakebite envenoming (SBE) is a neglected public health problem, especially in Asia, Latin America and Africa. There is inadequate knowledge of venom toxicokinetics especially from African snakes. To mimic a likely scenario of a snakebite envenoming, we used an enzyme-linked immunosorbent assay (ELISA) approach to study the toxicokinetic parameters in rabbits, following a single intramuscular (IM) administration of Northern Nigeria venom.
View Article and Find Full Text PDFBackground: Snakebite envenoming (SBE) is a high-priority, neglected, tropical disease that affects millions of people in developing countries annually. The only available standard drug used for the treatment of SBE is antisnake venom (ASV) which consists of immunoglobulins that have been purified from the plasma of animals hyper-immunized against snake venoms. The use of plants as alternatives for treatment of poisonous bites particularly snakebites is important in remote areas where there might be limited, or no access to hospitals and storage facilities for antivenom.
View Article and Find Full Text PDF