Fly ash (FA)-supported bimetallic nanoparticles (PdAg/FA) with varying Pd:Ag ratios were prepared by coprecipitation of Pd and Ag involving in situ reduction of Pd(II) and Ag(I) salts in aqueous medium. All the supported nanoparticles were thoroughly characterized with the aid of powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM)), and elemental analyses, which include inductively coupled plasma-optical emission spectroscopy (ICP-OES) and energy-dispersive X-ray spectroscopy (EDS). A gradual broadening and shifting of PXRD peaks, ascribable to Ag, to higher angles with an increase in the Pd:Ag ratio affirms the alloying of interface between Pd and Ag nanoparticles.
View Article and Find Full Text PDFCoal fly ash (FA) supported Pd-Ag bimetallic nanoparticles (FA-Pd-Ag) were prepared by reducing Pd(II) and Ag(I) salts together onto the dispersed solid support in aqueous medium. Electron microscope analysis (FE-SEM, HRTEM) in combination with elemental mapping (EDS) suggests that the nanoparticles are well dispersed on fly ash with an average diameter of 6-8 nm. The powder XRD analysis indicates that alloying of the interface occurs between Pd and Ag nanoparticles in FA-Pd-Ag, while XPS reveals that charge transfer takes place between the Pd and Ag moieties that come into contact with each other.
View Article and Find Full Text PDF