Publications by authors named "Bino G"

Platypuses are a unique freshwater mammal native to eastern Australia. They are semi-aquatic, predominantly nocturnal, and nest in burrows dug into the banks of waterbodies. Quantifying nesting burrow characteristics is challenging due to the species' cryptic nature.

View Article and Find Full Text PDF

Freshwater ecosystems, including rivers and floodplain wetlands, face severe stress from unsustainable water resources development, with climate change exerting further pressure. This study compares the relative effects of river regulation and projected climate change on river flows to the semi-arid Lowbidgee Floodplain (3250 km), the largest wetland ecosystem on the heavily regulated Murrumbidgee River, Australia's second longest river, within the Murray-Darling Basin. We modelled annual natural streamflow in the lower Murrumbidgee River before major dam constructions and water diversions (1890-1927), linking river flows to runoff from the upper Murrumbidgee catchment.

View Article and Find Full Text PDF

The evolutionarily unique platypus (Ornithorhynchus anatinus) has experienced major declines and extinctions from a range of historical and recent interacting human-mediated threats. Although spending most of their time in the water, platypuses can move over land. Nevertheless, uncertainties remain whether dams are barriers to movement, thus limiting gene flow and dispersal, essential to evolution and ecology.

View Article and Find Full Text PDF

Platypuses (Ornithorhynchus anatinus) forage for macroinvertebrate prey exclusively in freshwater habitats. Because food material in their faeces is well digested and mostly unidentifiable, previous dietary studies have relied on cheek pouch assessments and stable isotope analysis. Given DNA metabarcoding can identify species composition from only fragments of genetic material, we investigated its effectiveness in analysing the diet of platypuses, and to assess variation across seasons and sexes.

View Article and Find Full Text PDF

Platypuses (Ornithorhynchus anatinus) inhabit the permanent rivers and creeks of eastern Australia, from north Queensland to Tasmania, but are experiencing multiple and synergistic anthropogenic threats. Baseline information of health is vital for effective monitoring of populations but is currently sparse for mainland platypuses. Focusing on seven hematology and serum chemistry metrics as indicators of health and nutrition (packed cell volume (PCV), total protein (TP), albumin, globulin, urea, creatinine, and triglycerides), we investigated their variation across the species' range and across seasons.

View Article and Find Full Text PDF

Waterbird populations in eastern Australia have been declining over the past 35 years primarily due to water resource development and resultant changes to natural river flows and flooding. To mitigate these impacts there is an increased allocation of water for the environment, including waterbird populations. We used population viability models to identify the frequency of breeding events required to reverse the trend and achieve long-term species' management objectives.

View Article and Find Full Text PDF
Article Synopsis
  • In 2012, the IUCN initiated the development of the "Green Status of Species" to assess species recovery and the impact of conservation efforts.
  • The Green Status framework includes a method to evaluate species recovery, featuring metrics like conservation legacy and recovery potential, tested on 181 diverse species.
  • Findings showed that 59% of species were largely or critically depleted, highlighting that recovery status differs from extinction risk, and indicating the effectiveness of conservation efforts on the majority of species tested.
View Article and Find Full Text PDF

The strong inter-dependence between terrestrial and freshwater ecosystems, mediated by the character of vegetation and landscapes, can have significant impacts to freshwater species. A changing climate towards hotter and drier climates is already increasing fire frequencies and severity around the world. The platypus (Ornithorhynchus anatinus) is an iconic freshwater Australia species, facing increasing threats since European colonisation and with a distribution which coincides with fire prone areas.

View Article and Find Full Text PDF

The platypus is a semi-aquatic mammal, endemic to freshwater habitats of eastern Australia. There are gaps in the understanding of platypus movement behaviour within river systems, including spatial and temporal organization of individuals. We tracked movements of 12 platypuses on the regulated Snowy and Mitta Mitta Rivers for up to 12-months, the longest continuous tracking of platypus using acoustic telemetry.

View Article and Find Full Text PDF

The platypus () is one of the world's most evolutionarily distinct mammals, one of five extant species of egg-laying mammals, and the only living species within the family Ornithorhynchidae. Modern platypuses are endemic to eastern mainland Australia, Tasmania, and adjacent King Island, with a small introduced population on Kangaroo Island, South Australia, and are widely distributed in permanent river systems from tropical to alpine environments. Accumulating knowledge and technological advancements have provided insights into many aspects of its evolutionary history and biology but have also raised concern about significant knowledge gaps surrounding distribution, population sizes, and trends.

View Article and Find Full Text PDF

The platypus (Ornithorhynchus anatinus) is an evolutionarily distinct mammal, endemic to Australian freshwaters. Many aspects of its ecology and life-history, including detailed understanding of movements, are poorly known, hampered by its cryptic and mainly nocturnal habits and small numbers. We effectively trialled intraperitoneal implanted acoustic transmitters in nine platypuses in the Severn River (NSW), Australia, as a potential approach for studying movements in this challenging species.

View Article and Find Full Text PDF

The world's freshwater biotas are declining in diversity, range and abundance, more than in other realms, with human appropriation of water. Despite considerable data on the distribution of dams and their hydrological effects on river systems, there are few expansive and long analyses of impacts on freshwater biota. We investigated trends in waterbird communities over 32 years, (1983-2014), at three spatial scales in two similarly sized large river basins, with contrasting levels of water resource development, representing almost a third (29%) of Australia: the Murray-Darling Basin and the Lake Eyre Basin.

View Article and Find Full Text PDF

Freshwater turtles face many threats, including habitat loss and river regulation reducing occupancy and contributing to population decline. Limited knowledge of hydrological conditions required to maintain viable turtle populations in large floodplain wetlands hinders effective adaptive management of environmental water in regulated rivers. We surveyed three turtle species over 4 years across the Lower Murrumbidgee River floodplain, a large wetland complex with a long history of water resource development.

View Article and Find Full Text PDF

Animals disperse in response to poor resource conditions as a strategy of escaping harsh competition and stress, but may also disperse under good resource conditions, as these provide better chances of surviving dispersal and gaining fitness benefits such as avoiding kin competition and inbreeding. Individual traits should mediate the effect of resources, yielding a complex condition-dependent dispersal response. We investigated how experimental food reductions in a food-rich environment around poultry-growing villages interact with individual-traits (age, gender, body-mass) in two sympatric canids, red foxes and golden jackals, to jointly affect emigration propensity and survival during dispersal.

View Article and Find Full Text PDF

Knowledge of the life-history and population dynamics of Australia's iconic and evolutionarily distinct platypus (Ornithorhynchus anatinus) remains poor. We marked-recaptured 812 unique platypuses (total 1,622 captures), over four decades (1973-2014) in the Shoalhaven River, Australia. Strong sex-age differences were observed in life-history, including morphology and longevity.

View Article and Find Full Text PDF

Dryland rivers have considerable flow variability, producing complex ecosystems, processes, and communities of organisms that vary over space and time. They are also among the more vulnerable of the world's ecosystems. A key strategy for conservation of dryland rivers is identifying and maintaining key sites for biodiversity conservation, particularly protecting the quantity and quality of flow and flooding regimes.

View Article and Find Full Text PDF

Global wetland biodiversity loss continues unabated, driven by increased demand for freshwater. A key strategy for conservation management of freshwater systems is to maintain the quantity and quality of the natural water regimes, including the frequency and timing of flows. Formalizing an ecological model depicting the key ecological components and the underlying processes of cause and effect is required for successful conservation management.

View Article and Find Full Text PDF

This article documents the addition of 473 microsatellite marker loci and 71 pairs of single-nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Barteria fistulosa, Bombus morio, Galaxias platei, Hematodinium perezi, Macrocentrus cingulum Brischke (a.k.

View Article and Find Full Text PDF

This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp.

View Article and Find Full Text PDF

The pathogenetic role of patent foramen ovale (PFO) in embolic stroke and its prognostic and therapeutic implications have not yet been clearly defined. Nonetheless, recent availability of non-invasive diagnostic techniques, such as the transcranial Doppler (TCD), has increased the frequency with which this anomaly is diagnosed. Here we present the case of a young woman affected by post-partum peripheral facial palsy: further exams disclosed not only its truncal-ischaemic origin, but also, significantly, the presence of PFO, as well as of anticardiolipin antibodies (acL).

View Article and Find Full Text PDF

Previous studies from this and other laboratories indicated that the oestrogen-regulated heat shock protein HSP27 is involved in the control of MCF-7 cells growth and differentiation, as it also appears to be in other cell types, including osteoblasts and HL-60 cells. In the latter instance, induction of differentiation is associated with the downregulation of myeloblastin, a serine protease now identified as proteinase 3 (hence its designation as PR3/Mbn), mirrored by an increase in the cellular content of the small heat shock protein HSP27, a substrate to this enzyme. Besides, antisense inhibition of PR3/Mbn production sufficed for inducing HL-60 cells monocytic differentiation.

View Article and Find Full Text PDF

HL-60 and MCF-7 cells were treated with 0.15 microM camptothecin (CPT) or with the solvent dimethylsulfoxide (DMSO) for the controls, for 2, 3 and 4 h or for 24, 48 and 72 h, respectively. The apoptotic index (AI) was then evaluated in parallel by the following flow cytometric methods: (1) double staining of unfixed cells with fluoresceinated annexin V and propidium iodide (PI), this after detachment by trypsinization in the case of MCF-7 cultures; (2) prefixation in 70% ethanol, extraction of degraded, low molecular weight DNA with 0.

View Article and Find Full Text PDF

The role of HSP27 in cell growth and resistance to stress was investigated using murine fibrosarcoma L929 cells (normally devoid of constitutively expressed small HSPs) and human osteoblast-like SaOS-2 cells stably transfected with a human hsp27 expression vector. Our data showed that our L929 cells were more resistant to oxidative stress than generally observed for this line. Production of HSP27 in these cells led to a marked decrease in growth rate associated with a series of phenotypical changes, including cell spreading, cellular and nuclear hypertrophy, development of an irregular outline, and a tremendous accumulation of actin stress fibers.

View Article and Find Full Text PDF