Background: Axillary lymph node (ALN) staging is the most effective method to evaluate the condition of patients with breast cancer, their choice of treatment options, and prognosis. The sentinel lymph node (SLN) status assessment is the key to sentinel lymph node biopsy (SLNB) in patients with breast cancer. The choice of tracer and tracer injection sites affects SLNB.
View Article and Find Full Text PDFIntroduction: In recent years, the regulatory activities of long noncoding RNAs have received increasing attention as an important research focus. This study aimed to characterize the expression and detailed roles of TTC39A antisense RNA 1 (TTC39A-AS1) in breast cancer (BC), in addition to concentrating on its downstream mechanisms.
Methods: Quantitative RT-PCR was performed to determine the expression levels of TTC39A-AS1, microRNA-483-3p (miR-483-3p), and metastasis-associated gene 2 (MTA2).
Background: Genetic variations in key DNA repair genes may influence DNA repair capacity, DNA damage and breast carcinogenesis. The current study aimed to estimate the association of APEX1 and OGG1 polymorphisms with the risk of breast cancer development.
Methods: A total of 518 patients with histopathologically confirmed breast cancer and 921 region- and age-matched cancer-free controls were genotyped for the APEX1 polymorphisms rs3136817 and rs1130409 and the OGG1 polymorphisms rs1052133 and rs2072668 using a QuantStudio™ 12 K Flex Real-Time PCR System.
Aim: The aim of this study was to assess the sentinel lymph node (SLN) detection rate and accuracy of Tc-labeled sodium phytate and stannous chloride (Tc-PHY) injection versus Tc-labeled sulfur colloid (Tc-SC) injection in sentinel lymph node biopsy (SLNB) in patients with early stage breast cancer.
Methods: A total of 146 consecutive female patients with early stage breast cancer were recruited in this open-labeled, randomized, controlled study. SLNB was conducted on all patients, and Tc-PHY or Tc-SC was used as the radioactive agent (RA).
Aims: Genetic variations in DNA repair genes may impact repair functions, DNA damage, and breast cancer risk. This study is aimed to assess the associations of genetic polymorphisms in excision repair cross-complementing group 2 (ERCC2) with the risk of developing breast cancer.
Materials And Methods: In total, 101 histopathologically confirmed breast cancer cases and 101 age/region-matched healthy controls were genotyped for rs 3916840, rs 1799793, and rs 238416 in ERCC2 by polymerase chain reaction-restriction fragment length polymorphism.