Groundwater is crucial for human society's development in piedmont plains, yet its hydrogeochemistry often exhibits complex spatial distributions due to the interplay of nature and human factors. Ninety-two phreatic groundwater samples were collected from a typical piedmont plain in northern China and analyzed using self-organizing map combined with hydrogeochemical simulation, diagrams, and the entropy-weighted water quality index. Groundwater samples were categorized into four clusters, demonstrating a gradual hydrogeochemical facies evolution from HCO-Ca to Cl-Mg·Ca and Cl-Na, along with an increase in NO content in the order of clusters IV, II, III, and I.
View Article and Find Full Text PDFUnconventional 1T' phase transition metal dichalcogenides (TMDs) show great potential for hydrogen evolution reaction (HER). However, they are susceptible to transitioning into the stable 2H phase, which reduces their catalytic activity and stability. Herein, we present a scalable approach for designing thermally stable 1T'-TMDs hollow structures (HSs) by etching CuS templates from pre-synthesized CuS@TMDs heterostructures, including 1T'-MoS, MoSe, WS, and WSe HSs.
View Article and Find Full Text PDFEngineered heart tissues (EHTs) generated from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent powerful platforms for human cardiac research, especially in drug testing and disease modeling. Here, we report a flexible, three-dimensional electronic framework that enables real-time, spatiotemporal analysis of electrophysiologic and mechanical signals in EHTs under physiological loading conditions for dynamic, noninvasive, longer-term assessments. These electromechanically monitored EHTs support multisite measurements throughout the tissue under baseline conditions and in response to stimuli.
View Article and Find Full Text PDFThe cardiac conduction system (CCS) orchestrates the electrical impulses that enable coordinated contraction of the cardiac chambers. The T-box transcription factors and are required for cardiac conduction system development and associated with overlapping and distinct human cardiac conduction system diseases. We evaluated the coordinated role of and in the murine ventricular conduction system (VCS).
View Article and Find Full Text PDFJanus monolayers of transition metal dichalcogenides (TMDs) offer versatile applications due to their tunable polymorphisms. While previous studies focused on conventional 2H-phase Janus monolayers, the scalable synthesis of an unconventional 1T' phase remains challenging. We present a novel solution strategy for fabricating Janus 1T'-MoOSe and MoSSe monolayers by growing sandwiched Se-Mo-O/S shells onto Au nanocores.
View Article and Find Full Text PDFBackground: Plague is an acute infectious disease caused by the Yersinia pestis. Historically, it has been a major pandemic with high mortality rates, known as the "Black Death" in the 14th century, which resulted in millions of deaths in Europe. With increasing economic prosperity, more and more people are traveling to Xizang.
View Article and Find Full Text PDFThioesters are a common class of biologically active fragments and synthetically useful building blocks. An attractive synthetic approach would be to use simple and bench-stable carboxylic acids as a coupling partner. Herein, we present a 4-bromo pyridine-borane complex as a catalyst for the direct coupling of carboxylic acids with thiols.
View Article and Find Full Text PDFMyocarditis is clinically characterized by chest pain, arrhythmias, and heart failure, and treatment is often supportive. Mutations in DSP, a gene encoding the desmosomal protein desmoplakin, have been increasingly implicated in myocarditis. To model DSP-associated myocarditis and assess the role of innate immunity, we generated engineered heart tissues (EHTs) using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with heterozygous DSP truncating variants (DSPtvs) and a gene-edited homozygous deletion cell line (DSP-/-).
View Article and Find Full Text PDFGenetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid.
View Article and Find Full Text PDFThe spike (S) protein on the surface of the SARS-CoV-2 virus is critical to mediate fusion with the host cell membrane through interaction with angiotensin-converting enzyme 2 (ACE2). Additionally, heparan sulfate (HS) on the host cell surface acts as an attachment factor to facilitate the binding of the S receptor binding domain (RBD) to the ACE2 receptor. Aiming at interfering with the HS-RBD interaction to protect against SARS-CoV-2 infection, we have established a pentasaccharide library composed of 14,112 compounds covering the possible sulfate substitutions on the three sugar units (GlcA, IdoA, and GlcN) of HS.
View Article and Find Full Text PDFThe manipulation of oxygen vacancies (OVs) in metal oxides has progressively emerged as a versatile strategy for improving their catalytic performance. In this study, we aim to enhance the oxygen evolution reaction (OER) performance of cerium oxide (CeO) by doping heteroatoms (Fe, Co, Ni) to generate additional OVs. We systematically analyzed both the morphology and electronic structure of the obtained CeO catalysts.
View Article and Find Full Text PDF2D materials, such as graphene, transition metal dichalcogenides, black phosphorus, layered double hydroxides, and MXene, have exhibited broad application prospects in electrochemical energy conversion due to their unique structures and electronic properties. Recently, the engineering of heterostructures based on 2D materials, including 2D/0D, 2D/1D, 2D/2D, and 2D/3D, has shown the potential to produce synergistic and heterointerface effects, overcoming the inherent restrictions of 2D materials and thus elevating the electrocatalytic performance to the next level. In this review, recent studies are systematically summarized on heterostructures based on 2D materials for advanced electrochemical energy conversion, including water splitting, CO reduction reaction, N reduction reaction, etc.
View Article and Find Full Text PDFRational design and controllable synthesis of hollow structures based on transition metal dichalcogenides (TMDs) have gained tremendous attention in the field of clean energy. However, the general synthetic strategies to fabricate single-layer hollow structures of TMDs, especially with unconventional phases (e.g.
View Article and Find Full Text PDF19 compounds, including seven previously undescribed alkaloids ((-)-macleayin K (1), (+)-macleayin K (2), macleayin M (3), macleayin N (4), macleayin L (5), macleayin O (6), oxohydrastinine A (7), one new natural product (8), and 11 known compounds, were isolated from the fruit pods of Macleaya microcarpa. Their structures were defined based on NMR, HRESIMS, and electronic circular dichroism (ECD) data. A network pharmacology approach combined with molecular docking and in vitro validation was performed to determine the bioactivity, key targets of the 19 compounds against breast cancer (BC) and cervical cancer (CC).
View Article and Find Full Text PDFSARS-CoV-2 infects human epithelial cells through specific interaction with angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate proteoglycans act as the attachment factor to promote the binding of viral spike protein receptor binding domain (RBD) to ACE2 on host cells. Though the rapid development of vaccines has contributed significantly to preventing severe disease, mutated SARS-CoV-2 strains, especially the SARS-CoV-2 Omicron variant, show increased affinity of RBD binding to ACE2, leading to immune escape.
View Article and Find Full Text PDFIntraductal papillary neoplasm of the bile duct (IPNB) is a rare bile duct tumor characterized by intraductal papillary or villous neoplasms covered by neoplastic epithelium with fine fibrovascular stalks in the dilated bile ducts (1). Its true etiology remains unknown. Herein, we report two cases of IPNB that underwent surgical resection.
View Article and Find Full Text PDF1T'-phase MoS possesses excellent electrocatalytic performance, but due to the instability of the thermodynamic metastable phase, its actual electrocatalytic effect is seriously limited. Here, we report a wet-chemical synthesis strategy for constructing rGO/1T'-MoS/CeO heterostructures to improve the phase stability of metastable 1T' phase MoS monolayers. Importantly, the rGO/1T'-MoS/CeO heterostructure exhibits excellent electrocatalytic hydrogen evolution reaction (HER) performance, which is much better than the 1T'-MoS monolayers.
View Article and Find Full Text PDFPhase engineering of nanomaterials provides a promising way to explore the phase-dependent physicochemical properties and various applications of nanomaterials. A general bottom-up synthesis method under mild conditions has always been challenging globally for the preparation of the semimetallic phase-transition-metal dichalcogenide (1T'-TMD) monolayers, which are pursued owing to their unique electrochemical property, unavailable in their semiconducting 2H phases. Here, we report the general scalable colloidal synthesis of nanosized 1T'-TMD monolayers, including 1T'-MoS, 1T'-MoSe, 1T'-WS, and 1T'-WSe, which are revealed to be of high phase purity.
View Article and Find Full Text PDFSmall molecule probes with distinct reactivities are useful tools for the identification and characterization of protein modifications and function. Herein, we show that hydrazone probes with an -carbamate structural motif react differently from -carbamates within the human proteome. Mass spectrometry analysis of probe-treated mammalian cell lysates identified several proteins that were covalently modified by the hydrazone probes, including the cytidine deaminase APOBEC3A.
View Article and Find Full Text PDFHeparins and sulfated polysaccharides have been recognized as effective clinical anticoagulants for several decades. Heparins exhibit heterogeneity depending on the sources. Meanwhile, the adverse effect in the clinical uses and the adulteration of oversulfated chondroitin sulfate (OSCS) in heparins develop additional attention to analyze the purity of heparins.
View Article and Find Full Text PDFChronic inflammatory diseases often lead to muscle wasting and contractile deficit. While exercise can have anti-inflammatory effects, the underlying mechanisms remain unclear. Here, we used an in vitro tissue-engineered model of human skeletal muscle ("myobundle") to study effects of exercise-mimetic electrical stimulation (E-stim) on interferon-γ (IFN-γ)-induced muscle weakness.
View Article and Find Full Text PDFBaicalensines A () and B () were isolated from the roots of and structurally characterized using spectroscopic data, C NMR calculations, and the CASE algorithm. Compound , representing a new class of alkaloid dimers, contains berberine conjugated to a ring-opened isoquinoline. Compound is the first reported natural benzylisoquinoline bearing a formyl group at C-3.
View Article and Find Full Text PDFBackground: Extensive bioactivities of alkaloids from the genus ( (Willd.) R. Br.
View Article and Find Full Text PDF