Despite numerous studies on broadband photodetectors, the problematic query that remains unaddressed is the limited photoresponsivity while broadening the spectral regime. Here, for the first time, a rational design of a hybrid 1D CdSe nanobelt/2D PbI flake heterojunction device is constructed, which substantially boosts the photocurrent while significantly attenuating the dark current, resulting in improved photodetector figures-of-merit. Thanks to the excellent quality of the nanobelt/flake and built-in electric field at the CdSe/PbI interface heterojunction, photogenerated carriers are promptly segregated and more photoexcitons are accumulated by the respective electrodes, enabling a high responsivity of ∼10 A/W, making this one of the highest values among similar reported hybrid heterojunction photodetectors, together with a large linear dynamic range, superior sensitivity, excellent detectivity and external quantum efficiency, an ultrafast response, and a broadband spectral response range.
View Article and Find Full Text PDFLow-cost multicomponent alloyed one-dimensional (1D) semiconductors exhibit broadband absorption from the ultraviolet to the near-infrared regime, which has attracted a great deal of interest in high-performance flexible optoelectronic devices. Here, we report the facile one-step fabrication of high-performance broadband rigid and flexible photodevices based on multicomponent alloyed 1D cadmium-sulfur-selenide (CdSSe) micro-nanostructures obtained via a vapor transport route. Photoresponse measurements have demonstrated their superior spectral photoresponsivity (5.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Nanostructured photothermal membranes hold great potential for solar-driven seawater desalination; however, their pragmatic applications are often limited by substantial salt accumulation. To solve this issue, we have designed and prepared flexible and washable carbon-nanotube-embedded polyacrylonitrile nonwoven fabrics by a simple electrospinning route. The wet fabric exhibits a strong photoabsorption in a wide spectral range (350-2500 nm), and it has a photoabsorption efficiency of 90.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2017
A series of Ti V O (0% ⩽ x ⩽ 4.48%) thin films on c-plane sapphire substrates have been fabricated by co-sputtering oxidation solutions, and the metal-insulator transition temperature (T ) of Ti V O films rises monotonically at the rate of 1.64 K/at.
View Article and Find Full Text PDFA series of epitaxial V1-xWxO2 (0 ≤ x ≤ 0.76%) nanocrystalline films on c-plane sapphire substrates have been successfully synthesized. Orbital structures of V1-xWxO2 films with monoclinic and rutile states have been investigated by ultraviolet-infrared spectroscopy combined with first principles calculations.
View Article and Find Full Text PDFA domain wall, as a device, can bring about a revolution in developing manipulation of semiconductor heterostructures devices at the atom scale. However, it is a challenge for these new devices to control domain wall motion through insulator-metal transition of correlated-electron materials. To fully understand and harness this motion, it requires visualization of domain wall dynamics in real space.
View Article and Find Full Text PDF