Tandem structures with different subpixels are promising for perovskite-based multicolor electroluminescence (EL) devices in ultra-high-resolution full-color displays; however, realizing excellent luminance- and color-independent tunability considering the low brightness and stability of blue perovskite light-emitting diodes (PeLEDs) remains a challenge. Herein, a bright and stable blue gallium nitride (GaN) LED is utilized for vertical integration with a green MAPbBr PeLED, successfully achieving a Pe-GaN tandem LED with independently tunable luminance and color. The electronic and photonic co-excitation (EPCE) effect is found to suppress the radiative recombination and current injection of PeLEDs, leading to degraded luminance and current efficiency under direct current modulation.
View Article and Find Full Text PDFIn this work, a phosphor converter with small thickness and low concentration, based on a micro-angle tunable tilted filter (ATFPC), was proposed for hybrid-type laser lighting devices to solve the problem of silicone phosphor converters' carbonizing under high-energy density. Taking advantage of the filter and the scattering characteristics of microphosphors, two luminous areas are generated on the converter. Compared with conventional phosphor converters (CPCs), the lighting effects of ATFPCs are adjustable using tilt angles.
View Article and Find Full Text PDFIn this study, a strongly reflective and photoluminescent (PL) poly(lactic-co-glycolic acid) quantum dot (QD) hybrid nanofiber (PQHN) structure is introduced to enhance the luminous efficacy of QD-phosphor hybrid white light-emitting diodes (QD-WLEDs). As the thickness of PQHN film increases, the PL is found to continuously increase, exhibiting a maximum peak intensity at 120 μm, which is 1.92 times that at 12 μm, and showing the highest diffuse reflectance of 94.
View Article and Find Full Text PDFIn this study, we analyze the influence of the pore structure of an SBA-15 particle on the light emission from its inner adsorbed quantum dots (QDs) and outer light-emitting diode (LED) chips. It is found that the particle features of a high refractive index, comparable feature size of pore structure, and lower amount of QD adsorption help with QD light extraction, demonstrating a mechanism to suppress QD light propagating through pores and thus reducing the reabsorption loss. We consequently developed highly efficient QD white LEDs with wet-mixing QD/SBA-15 nanocomposite particles (NPs) by further optimizing the packaging methods and the introduced NP mass ratio.
View Article and Find Full Text PDFAll-inorganic cesium lead halide perovskite CsPbX (X = Cl, Br, I) nanocrystals (NCs) have attracted significant attention owing to their fascinating electronic and optical properties. However, researchers still face challenges to achieve highly stable and photoluminescent CsPbX NCs at room temperature by the direct-synthesis method. Herein, we synthesize CsPbX NCs by a facile and environmentally friendly method, which uses an aqueous solution of metal halides to react with CsPbBr NCs via interfacial anion exchange reactions and without applying any pretreatment.
View Article and Find Full Text PDFQuantum-dot (QD) white light-emitting diodes (LEDs) are promising for illumination and display applications due to their excellent color quality. Although they have a high quantum yield close to unity, the reabsorption of QD light leads to high conversion loss, significantly reducing the luminous efficacy and stability of QD white LEDs. In this report, SBA-15 mesoporous particles (MPs) with two-dimensional hexagonal pore structures (2D-HPS) are utilized to largely enhance the luminous efficacy and color-conversion efficiency of QD white LEDs in excess of 50%.
View Article and Find Full Text PDFThe nanocrystals (NCs) of inorganic perovskites CsPbX and CsPbX (X = Cl, Br, I) are showing a great development potential due to their versatility of crystal structure. Here, we used a microchannel reactor to synthesize both CsPbBr NCs (CsPbBr NCs) and CsPbBr NCs with embedded CsPbBr (CsPbBr/CsPbBr NCs). Via speed control of the precursor, ligands around the surface of NCs were effectively regulated by ethyl acetate, allowing the transformation from CsPbBr NCs to CsPbBr/CsPbBr NCs in a short time, an outstanding stability of NCs, and a better crosslinking between NCs and polymer for the application of LEDs.
View Article and Find Full Text PDFAlthough quantum dots (QDs) have a high quantum yield close to one in a solution, they exhibit low conversion efficiency in a solidification polymer matrix, which hampers the development of QD-based light-emitting diodes (LEDs) with high stability and optical performance. In this study, we proposed a methyl-terminated-polydimethylsiloxane-(PDMS)-based liquid-type packaging structure (LPS) to improve stability and optical performance of QD-based LEDs. Compared with the traditional ethylene-terminated-PDMS-based solid-type packaging structure, the LPS with an optimized kinematic viscosity of 10000 m/s can provide higher stability and optical performances for QD-based LEDs, including total radiant power and luminous flux.
View Article and Find Full Text PDFPolyacrylonitrile electrospinning nanofiber film was introduced into a light emitting diode (LED) lamp to exploit the strong reflective and scattering effects. The light extraction mechanism was studied systematically for three different electrospinning types in three different types of LED lamps. For the all-electrospinning types, the luminous efficacy increased for the white LED, outwards remote phosphor layer, and inwards remote phosphor layer lamps by 10.
View Article and Find Full Text PDFIn this report, a blue anti-transmission film (BATF) has been introduced to improve the color-conversion efficiency (CCE) and the stability of quantum dot (QD) films. The results indicate that the CCE can be increased by as much as 93% using 15 layers of BATFs under the same QD concentration. Therefore, the same CCE can be achieved using BATF-QD hybrid films with a lower QD concentration when compared with standard QD films.
View Article and Find Full Text PDFIn order to improve the color uniformity of multi-chip LEDs, a patterned phosphor configuration has been proposed by using pulsing spray process. The patterned phosphor has detached yellow and red phosphor regions matching every single LED chip. Optical performances of different phosphor parameters are experimentally investigated.
View Article and Find Full Text PDFThe ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr₃ QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr₃ QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component.
View Article and Find Full Text PDFTo improve the optical performance of the conformal white light-emitting diodes (LEDs), previous studies mainly focus on the phosphor structures design by simulations and experiments methods. However, one of the most critical parameters, i.e.
View Article and Find Full Text PDFInspired by the Papilio blumei butterfly, quantum-dot (QD) film coupled with micro-concavity array (MCA) films is proposed in this Letter to enhance color conversion efficiency (CCE) of QD-based light-emitting diodes (LEDs). The diameter, aspect ratio, and pitch of the MCA are optimized in the optical simulations. Both the simulation and experimental results show that the scattering and double reflection effects are the key to the CCE improvement of QD films.
View Article and Find Full Text PDFCdSe/ZnS quantum-dot-converted elements (QDCEs) are good candidates for substituting rare-earth phosphor-converted elements (PCEs) in white light-emitting diodes (LEDs); however, studies on their scattering and absorption properties are scarce, suppressing further increment in the optical and thermal performance of quantum-dot-converted LEDs. Therefore, we introduce the finite-difference time-domain (FDTD) method to achieve the critical optical parameters of QDCEs when used in white LEDs; their scattering cross-section (coefficient), absorption cross-section (coefficient), and scattering phase distributions are presented and compared with those of traditional YAG phosphor-converted elements (PCEs) at varying particle size and concentration. At a commonly used concentration ( < 50 mg / cm 3 ), QDCEs exhibit stronger absorption (tens of millimeters, even for green-to-red-wavelength light) and weaker scattering ( < 1 mm - 1 ) compared to PCEs; the reabsorption, total internal reflection, angular uniformity, and thermal quenching would be more significant concerns for QDCEs.
View Article and Find Full Text PDFBased on electrospinning technology, in this study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber films with high reflectivity and scattering properties. Various films with different thicknesses and fiber diameters were fabricated by changing the electrospinning time and solution concentration, respectively. Detailed optical measurements demonstrate that the film reflectance and scattering ability increase with the thickness, whereas fiber diameter contributes little to both properties.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2017
Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.
View Article and Find Full Text PDFUsing freeform lenses to construct uniform illumination systems is important in light-emitting diode (LED) devices. In this paper, the energy feedback design is used for freeform lens (EFFL) constructions by solving a set of partial differential equations that describe the mapping relationships between the source and the illumination pattern. The simulation results show that the method can overcome the illumination deviation caused by the extended light source (ELS) problem.
View Article and Find Full Text PDFWe apply a microstructure array (MSA) film to improve the angular color uniformity (ACU) of a correlated-color-temperature-tunable LED (CCT-tunable LED) with tunable CCT ranging from 2700 to 6500 K. The effects of the MSA film area and the height between the film and LED are investigated and optimized. The resulting ACU is greatly improved for all CCT ranges with little luminous flux loss.
View Article and Find Full Text PDFAlthough the light-emitting diode (LED) has revolutionized lighting, the non-uniformity of its correlated color temperature (CCT) still remains a major concern. In this context, to improve the light distribution performance of remote phosphor LED lamps, we employ a micropatterned array (MPA) optical film fabricated using a low-cost molding process. The parameters of the MPA, including different installation configurations, positioning, and diameters, are optimized by combining the finite-difference time-domain and ray-tracing methods.
View Article and Find Full Text PDF