Publications by authors named "Binh T Pham"

Ensemble learning techniques have shown promise in improving the accuracy of landslide models by combining multiple models to achieve better predictive performance. In this study, several ensemble methods (Dagging, Bagging, and Decorate) and a radial basis function classifier (RBFC) were combined to predict landslide susceptibility in the Trung Khanh district of the Cao Bang Province, Vietnam. The ensemble models were developed using a geospatial database containing 45 historical landslides (1074 points) and thirteen influencing variables characterizing the topography, geology, land use/cover, and human activities of the study area.

View Article and Find Full Text PDF

Floods occur frequently in Romania and throughout the world and are one of the most devastating natural disasters that impact people's lives. Therefore, in order to reduce the potential damages, an accurate identification of surfaces susceptible to flood phenomena is mandatory. In this regard, the quantitative calculation of flood susceptibility has become a very popular practice in the scientific research.

View Article and Find Full Text PDF

Shortly after its emergence, Omicron and its sub-variants have quickly replaced the Delta variant during the current COVID-19 outbreaks in Vietnam and around the world. To enable the rapid and timely detection of existing and future variants for epidemiological surveillance and diagnostic applications, a robust, economical real-time PCR method that can specifically and sensitively detect and identify multiple different circulating variants is needed. The principle of target- failure (TF) real-time PCR is simple.

View Article and Find Full Text PDF

In this study, a new approach of machine learning (ML) models integrated with the analytic hierarchy process (AHP) method was proposed to develop a holistic flood risk assessment map. Flood susceptibility maps were created using ML techniques. AHP was utilized to combine flood vulnerability and exposure criteria.

View Article and Find Full Text PDF

It is difficult to predict and model with an accurate model the floods, that are one of the most destructive risks across the earth's surface. The main objective of this research is to show the prediction power of three ensemble algorithms with respect to flood susceptibility estimation. These algorithms are: Iterative Classifier Optimizer - Alternating Decision Tree - Frequency Ratio (ICO-ADT-FR), Iterative Classifier Optimizer - Deep Learning Neural Network - Frequency Ratio (ICO-DLNN-FR) and Iterative Classifier Optimizer - Multilayer Perceptron - Frequency Ratio (ICO-MLP-FR).

View Article and Find Full Text PDF

This study evaluates state-of-the-art machine learning models in predicting the most sustainable arsenic mitigation preference. A Gaussian distribution-based Naïve Bayes (NB) classifier scored the highest Area Under the Curve (AUC) of the Receiver Operating Characteristic curve (0.82), followed by Nu Support Vector Classification (0.

View Article and Find Full Text PDF

This study aims to investigate the influence of all the mixture components of high-performance concrete (HPC) on its early compressive strength, ranging from 1 to 14 days. To this purpose, a Gaussian Process Regression (GPR) algorithm was first constructed using a database gathered from the available literature. The database included the contents of cement, blast furnace slag (BFS), fly ash (FA), water, superplasticizer, coarse, fine aggregates, and testing age as input variables to predict the output of the problem, which was the early compressive strength.

View Article and Find Full Text PDF

The California Bearing Ratio (CBR) is an important index for evaluating the bearing capacity of pavement subgrade materials. In this research, random subspace optimization-based hybrid computing models were trained and developed for the prediction of the CBR of soil. Three models were developed, namely reduced error pruning trees (REPTs), random subsurface-based REPT (RSS-REPT), and RSS-based extra tree (RSS-ET).

View Article and Find Full Text PDF

Unlabelled: We bring the notion of connectedness (Diebold and Yilmaz, Int J Forecast 28(1):57-66 2012) to a set of two critical macroeconomic variables as inflation and unemployment. We focus on the G7 economies plus Spain, and use monthly data-high-frequency data in a macro setting-to explore the extent and consequences of total and directional volatility spillovers across variables and countries. We find that total connectedness is larger for prices (58.

View Article and Find Full Text PDF

Understanding the radon dispersion released from this mine are important targets as radon dispersion is used to assess radiological hazard to human. In this paper, the main objective is to develop and optimize a machine learning model namely Artificial Neural Network (ANN) for quick and accurate prediction of radon dispersion released from Sinquyen mine, Vietnam. For this purpose, a total of million data collected from the study area, which includes input variables (the gamma data of uranium concentration with 3 × 3m grid net survey inside mine, 21 of CR-39 detectors inside dwellings surrounding mine, and gamma dose at 1 m from ground surface data) and an output variable (radon dispersion) were used for training and validating the predictive model.

View Article and Find Full Text PDF

Groundwater is one of the major valuable water resources for the use of communities, agriculture, and industries. In the present study, we have developed three novel hybrid artificial intelligence (AI) models which is a combination of modified RealAdaBoost (MRAB), bagging (BA), and rotation forest (RF) ensembles with functional tree (FT) base classifier for the groundwater potential mapping (GPM) in the basaltic terrain at DakLak province, Highland Centre, Vietnam. Based on the literature survey, these proposed hybrid AI models are new and have not been used in the GPM of an area.

View Article and Find Full Text PDF

There is an evident increase in the importance that remote sensing sensors play in the monitoring and evaluation of natural hazards susceptibility and risk. The present study aims to assess the flash-flood potential values, in a small catchment from Romania, using information provided remote sensing sensors and Geographic Informational Systems (GIS) databases which were involved as input data into a number of four ensemble models. In a first phase, with the help of high-resolution satellite images from the Google Earth application, 481 points affected by torrential processes were acquired, another 481 points being randomly positioned in areas without torrential processes.

View Article and Find Full Text PDF

Aims: To assess a cost-effective in-house selective plate formula for actively screening carbapenem-resistant Enterobacteriaceae (CRE).

Methodology And Results: The in-house formula included CHROMagar Orientation, meropenem, and ingredients present in the Mac-Conkey formula, such as bile salts and crystal violet (pH 6.9-7.

View Article and Find Full Text PDF

In this study, a novel hybrid surrogate machine learning model based on a feedforward neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize the weights and bias of the FNN for developing a hybrid model (FNN-OSS). For achieving this goal, an experimental database containing 422 instances was firstly gathered from the literature and used to develop the FNN-OSS algorithm. The input variables in the database contained the geometrical characteristics of CFST columns, and the mechanical properties of two CFST constituent materials, i.

View Article and Find Full Text PDF

Warm mix asphalt (WMA) technology, taking advantage of reclaimed asphalt pavements, has gained increasing attention from the scientific community. The determination of technical specifications of such a type of asphalt concrete is crucial for pavement design, in which the asphalt concrete dynamic modulus (E*) of elasticity is amongst the most critical parameters. However, the latter could only be determined by complicated, costly, and time-consuming experiments.

View Article and Find Full Text PDF

Due to their excellent electrocatalytic properties, transition metal phosphides have been considered as desirable and cost-effective electrocatalysts in recent years. However, in many cases, the synthesis of phosphide-based nanostructures requires expensive conditions and toxic phosphorous-containing compounds. Therefore, the emergence of an economical and eco-friendly method for creating phosphides-based nanostructures can be very effective.

View Article and Find Full Text PDF

In this paper, the main objectives are to investigate and select the most suitable parameters used in particle swarm optimization (PSO), namely the number of rules (n), population size (n), initial weight (w), personal learning coefficient (c), global learning coefficient (c), and velocity limits (f), in order to improve the performance of the adaptive neuro-fuzzy inference system in determining the buckling capacity of circular opening steel beams. This is an important mechanical property in terms of the safety of structures under subjected loads. An available database of 3645 data samples was used for generation of training (70%) and testing (30%) datasets.

View Article and Find Full Text PDF

Predictive capability of landslide susceptibilities is assumed to be varied with different sampling techniques, such as (a) the landslide scarp centroid, (b) centroid of landslide body, (c) samples of the scrap region representing the scarp polygon, and (d) samples of the landslide body representing the entire landslide body. However, new advancements in statistical and machine learning algorithms continuously being updated the landslide susceptibility paradigm. This paper explores the predictive performance power of different sampling techniques in landslide susceptibility mapping in the wake of increased usage of artificial intelligence.

View Article and Find Full Text PDF

Particulate matter (PM) emission is one of the leading environmental pollution issues associated with the coal mining industry. Before any control techniques can be employed, however, an accurate prediction of PM concentration is desired. Towards this end, this work aimed to provide an accurate estimation of PM concentration using a hybrid machine-learning technique.

View Article and Find Full Text PDF

The main aim of this study is to assess groundwater potential of the DakNong province, Vietnam, using an advanced ensemble machine learning model (RABANN) that integrates Artificial Neural Networks (ANN) with RealAdaBoost (RAB) ensemble technique. For this study, twelve conditioning factors and wells yield data was used to create the training and testing datasets for the development and validation of the ensemble RABANN model. Area Under the Receiver Operating Characteristic (ROC) curve (AUC) and several statistical performance measures were used to validate and compare performance of the ensemble RABANN model with the single ANN model.

View Article and Find Full Text PDF

Concrete filled steel tubes (CFSTs) show advantageous applications in the field of construction, especially for a high axial load capacity. The challenge in using such structure lies in the selection of many parameters constituting CFST, which necessitates defining complex relationships between the components and the corresponding properties. The axial capacity (P) of CFST is among the most important mechanical properties.

View Article and Find Full Text PDF

Development of Foamed Concrete (FC) and incessant increases in fabrication technology have paved the way for many promising civil engineering applications. Nevertheless, the design of FC requires a large number of experiments to determine the appropriate Compressive Strength (CS). Employment of machine learning algorithms to take advantage of the existing experiments database has been attempted, but model performance can still be improved.

View Article and Find Full Text PDF

Polymer-assisted flocculation-dewatering of mineral processing tailings (MPT) is crucial for its environmental disposal. To reduce the number of laboratory experiments, this study proposes a novel and hybrid machine learning (ML) method for the prediction of the flocculation-dewatering performance. The proposed ML method utilizes principle component analysis (PCA) for the dimension-reduction of the input space.

View Article and Find Full Text PDF

Gas multisensor devices offer an effective approach to monitor air pollution, which has become a pandemic in many cities, especially because of transport emissions. To be reliable, properly trained models need to be developed that combine output from sensors with weather data; however, many factors can affect the accuracy of the models. The main objective of this study was to explore the impact of several input variables in training different air quality indexes using fuzzy logic combined with two metaheuristic optimizations: simulated annealing (SA) and particle swarm optimization (PSO).

View Article and Find Full Text PDF
Article Synopsis
  • Groundwater in northwest Iran's Maku Plain is crucial for drinking and irrigation, but it faces fluoride contamination, necessitating accurate prediction models.
  • The study introduces various data mining algorithms, including K-nearest neighbors and tree-based methods, to forecast fluoride levels using data from 143 samples collected over several years.
  • Among these models, the IBK showed the best predictive performance, while others like RBD and M5P struggled with accuracy, highlighting the need to incorporate multiple water quality variables for better predictions.
View Article and Find Full Text PDF