Publications by authors named "Binh T Mai"

A self-assemble amphiphilic diblock copolymer that can incorporate iron oxide nanocubes (IONCs) in chain-like assemblies as heat mediators for magnetic hyperthermia (MHT) and tuneable amounts of IR780 dye as agent for photothermal therapy (PTT) is developed. MHT-heating performance of photobeads in viscous media have the same heat performances in water at magnetic field conditions of clinical use. Thanks to IR780, the photobeads are activated by infrared laser light within the first biological window (808 nm) with a significant enhancement of photo-stability of IR780 enabling the raise of the temperature at therapeutic values during multiple PTT cycles and showing unchanged optical features up to 8 days.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression.

View Article and Find Full Text PDF

CuFeS chalcopyrite nanoparticles (NPs) can generate heat under exposure to near-infrared laser irradiation. Here, we develop a protocol to decorate the surface of CuFeS NPs (13 nm) with a thermoresponsive (TR) polymer based on poly(ethylene glycol methacrylate) to combine heat-mediated drug delivery and photothermal heat damage. The resulting TR-CuFeS NPs feature a small hydrodynamic size (∼75 nm), along with high colloidal stability and a TR transition temperature of 41 °C in physiological conditions.

View Article and Find Full Text PDF

Nanomedicine is currently focused on the design and development of nanocarriers that enhance drug delivery to the brain to address unmet clinical needs for treating neuropsychiatric disorders and neurological diseases. Polymer and lipid-based drug carriers are advantageous for delivery to the central nervous system (CNS) due to their safety profiles, drug-loading capacity, and controlled-release properties. Polymer and lipid-based nanoparticles (NPs) are reported to penetrate the blood-brain barrier (BBB) and have been extensively assessed in in vitro and animal models of glioblastoma, epilepsy, and neurodegenerative disease.

View Article and Find Full Text PDF

Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e.

View Article and Find Full Text PDF

Exploiting the local heat on the surface of magnetic nanoparticles (MNPs) upon exposure to an alternating magnetic field (AMF) to cleave thermal labile bonds represents an interesting approach in the context of remotely triggered drug delivery. Here, taking advantages of a simple and scalable two-step ligand exchange reaction, we have prepared iron oxide nanocubes (IONCs) functionalized with a novel multifunctional polymer ligand having multiple catechol moieties, furfuryl pendants, and polyethylene glycol (PEG) side chains. Catechol groups ensure a strong binding of the polymer ligands to the IONCs surface, while the PEG chains provide good colloidal stability to the polymer-coated IONCs.

View Article and Find Full Text PDF

Here, the synthesis and proof of exploitation of three-material inorganic heterostructures made of iron oxide-gold-copper sulfide (Fe O @Au@Cu S) are reported. Starting with Fe O -Au dumbbell heterostructure as seeds, a third Cu S domain is selectively grown on the Au domain. The as-synthesized trimers are transferred to water by a two-step ligand exchange procedure exploiting thiol-polyethylene glycol to coordinate Au and Cu S surfaces and polycatechol-polyethylene glycol to bind the Fe O surface.

View Article and Find Full Text PDF

Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state.

View Article and Find Full Text PDF

We report a one-step synthesis of halide perovskite nanocrystals embedded in amphiphilic polymer (poly(acrylic acid)--poly(styrene), PAA--PS) micelles, based on injecting a dimethylformamide solution of PAA--PS, PbBr, ABr (A = Cs, formamidinium, or both) and "additive" molecules in toluene. These bifunctional or trifunctional short chain organic molecules improve the nanocrystal-polymer compatibility, increasing the nanocrystal stability against polar solvents and high flux irradiation (the nanocrystals retain almost 80% of their photoluminescence after 1 h of 3.2 w/cm irradiation).

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are the tumor cell subpopulation responsible for resistance to chemotherapy, tumor recurrence, and metastasis. An efficient therapy must act on low proliferating quiescent-CSCs (q-CSCs). We here investigate the effect of magnetic hyperthermia (MHT) in combination with local chemotherapy as a dual therapy to inhibit patient-derived colorectal qCR-CSCs.

View Article and Find Full Text PDF

Active packaging materials, biodegradable and from renewable resources, are the most promising substitutes of nonbiodegradable, petroleum-based plastics, toward green and sustainable packaging solutions. In this study, an innovative bioplastic system, composed of carbon dioxide-derived poly(propylene carbonate) (PPC) and nature-originated cellulose acetate (CA), was developed. The extract from oregano waste was incorporated into the bioplastics as a low-cost and effective antioxidant resource.

View Article and Find Full Text PDF

The use of magnetic nanoparticles in oncothermia has been investigated for decades, but an effective combination of magnetic nanoparticles and localized chemotherapy under clinical magnetic hyperthermia (MH) conditions calls for novel platforms. In this study, we have engineered magnetic thermoresponsive iron oxide nanocubes (TR-cubes) to merge MH treatment with heat-mediated drug delivery, having in mind the clinical translation of the nanoplatform. We have chosen iron oxide based nanoparticles with a cubic shape because of their outstanding heat performance under MH clinical conditions, which makes them benchmark agents for MH.

View Article and Find Full Text PDF

Herein, by studying a stepwise phase transformation of 23 nm FeO-FeO core-shell nanocubes into FeO, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-FeO nanocubes from having stoichiometric phase compositions into Fe-deficient FeO phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects.

View Article and Find Full Text PDF

Combining hard matter, like inorganic nanocrystals, and soft materials, like polymers, can generate multipurpose materials with a broader range of applications with respect to the individual building blocks. Given their unique properties at the nanoscale, magnetic nanoparticles (MNPs) have drawn a great deal of interest due to their potential use in the biomedical field, targeting several applications such as heat hubs in magnetic hyperthermia (MHT, a heat-damage based therapy), contrast agents in magnetic resonance imaging (MRI), and nanocarriers for targeted drug delivery. At the same time, polymers, with their versatile macromolecular structure, can serve as flexible platforms with regard to constructing advanced functional materials.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoa774eat3p3uvmfno1r6rti6uevo0uco): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once