Publications by authors named "Bingzhao Gao"

With the development of artificial intelligence and breakthroughs in deep learning, large-scale foundation models (FMs), such as generative pre-trained transformer (GPT), Sora, etc., have achieved remarkable results in many fields including natural language processing and computer vision. The application of FMs in autonomous driving holds considerable promise.

View Article and Find Full Text PDF

The safety of two-wheelers is a serious public safety issue nowadays. Two-wheelers usually have severe conflict interaction with vehicles at intersections, such as running red lights, which is very likely to cause traffic accidents. Therefore, a model of two-wheeler driving behavior in conflicting interactions can provide guidance for traffic safety management on one hand, and can be used for the development and testing of autonomous vehicles on the other.

View Article and Find Full Text PDF

Existing monocular depth estimation driving datasets are limited in the number of images and the diversity of driving conditions. The images of datasets are commonly in a low resolution and the depth maps are sparse. To overcome these limitations, we produce a Synthetic Digital City Dataset (SDCD) which was collected under 6 different weather driving conditions, and 6 common adverse perturbations caused by the data transmission.

View Article and Find Full Text PDF

High-performance learning-based control for the typical safety-critical autonomous vehicles invariably requires that the full-state variables are constrained within the safety region even during the learning process. To solve this technically critical and challenging problem, this work proposes an adaptive safe reinforcement learning (RL) algorithm that invokes innovative safety-related RL methods with the consideration of constraining the full-state variables within the safety region with adaptation. These are developed toward assuring the attainment of the specified requirements on the full-state variables with two notable aspects.

View Article and Find Full Text PDF

In complex driving scenarios, automated vehicles should behave reasonably and respond adaptively with high computational efficiency. In this paper, a computational efficient motion planning method is proposed, which considers traffic interaction and accelerates calculation. Firstly, the behavior is decided by connecting the points on the unequally divided road segments and lane centerlines, which simplifies the decision-making process in both space and time span.

View Article and Find Full Text PDF

Guaranteed safety and performance under various circumstances remain technically critical and practically challenging for the wide deployment of autonomous vehicles. Safety-critical systems in general, require safe performance even during the reinforcement learning (RL) period. To address this issue, a Barrier Lyapunov Function-based safe RL (BLF-SRL) algorithm is proposed here for the formulated nonlinear system in strict-feedback form.

View Article and Find Full Text PDF

The roundabout is a typical changeable, interactive scenario in which automated vehicles should make adaptive and safe decisions. In this article, an optimization embedded reinforcement learning (OERL) is proposed to achieve adaptive decision-making under the roundabout. The promotion is the modified actor of the Actor-Critic framework, which embeds the model-based optimization method in reinforcement learning to explore continuous behaviors in action space directly.

View Article and Find Full Text PDF

This study is aimed at providing an effective method for determining strain-load relationship and at quantifying the strain distribution within the whole tibia under axial compressive load on rats. Rat tibial models with axial compressive load were designed. Strains in three directions (0°, 45°, and 90°) at the proximal shaft of the tibia were measured by using a strain gauge rosette, which was used to calculate the maximum and minimum principal strains.

View Article and Find Full Text PDF

The aim of this study was to investigate the morphological and microstructural alterations of the articular cartilage and bones during treadmill exercises with different exercise intensities. Sixty 5-week-old female rats were randomly divided into 10 groups: five additional weight-bearing groups (WBx) and five additional weight-bearing with treadmill exercise groups (EBx), which were subjected to additional weight bearing of % ( = 0, 5, 12, 19, and 26) of the corresponding body weight of each rat for 15 min/day. After 8 weeks of experiment, the rats were humanely sacrificed and their bilateral intact knee joints were harvested.

View Article and Find Full Text PDF

In this paper, a model-based nonlinear gearshift controller is designed by the backstepping method to improve the shift quality of vehicles with a dual-clutch transmission (DCT). Considering easy-implementation, the controller is rearranged into a concise structure which contains a feedforward control and a feedback control. Then, robustness of the closed-loop error system is discussed in the framework of the input to state stability (ISS) theory, where model uncertainties are considered as the additive disturbance inputs.

View Article and Find Full Text PDF

In this paper, a data-driven predictive controller is designed for the start-up process of vehicles with automated manual transmissions (AMTs). It is obtained directly from the input-output data of a driveline simulation model constructed by the commercial software AMESim. In order to obtain offset-free control for the reference input, the predictor equation is gained with incremental inputs and outputs.

View Article and Find Full Text PDF

The aim of this paper was to introduce the idea of topology optimization in engineering to the simulation of bone morphology. The external shape of bone structure was predicted with the quantitative bone functional adaptation theory. The high-order nonlinear equation of bone remodeling proposed by Zhu et al.

View Article and Find Full Text PDF

In this paper, we introduced a high-order non-linear equation of bone remodeling to combine with FEM by introducing two non-linearities, i.e. the remodeling coefficient B(t) and the order of non-linear remodeling equation.

View Article and Find Full Text PDF