Publications by authors named "Bingying Zhou"

Article Synopsis
  • Human primary cardiomyocytes serve as a crucial in vitro model for investigating heart function and related diseases.
  • The presented protocol outlines the process for isolating these cells using a specialized digestion solution that includes methylcellulose, covering sample collection, tissue preparation, and cell dissociation steps.
  • Key procedures for reintroducing calcium and assessing cell viability are also included, enhancing the effectiveness and reliability of cardiomyocyte isolation for cardiac research.
View Article and Find Full Text PDF

Postnatal cardiac development requires the orchestrated maturation of diverse cellular components for which unifying control mechanisms are still lacking. Using full-length sequencing, we examined the transcriptomic landscape of the maturating mouse heart (E18.5-P28) at single-cell and transcript isoform resolution.

View Article and Find Full Text PDF

Obtaining high-quality adult human primary cardiomyocytes (hPCM) have been technically challenging due to isolation-induced biochemical and mechanical stress. Building upon a previous tissue slicing-assisted digestion method, we introduced polymers into the digestion solution to reduce mechanical damage to cells. We found that low-viscosity methylcellulose (MC) significantly improved hPCM viability and yield.

View Article and Find Full Text PDF

Background: Progressive remodeling of cardiac gene expression underlies decline in cardiac function, eventually leading to heart failure. However, the major determinants of transcriptional network switching from normal to failed hearts remain to be determined.

Methods: In this study, we integrated human samples, genetic mouse models, and genomic approaches, including bulk RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, to identify the role of chromatin remodeling complex INO80 in heart homeostasis and dysfunction.

View Article and Find Full Text PDF

Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV).

View Article and Find Full Text PDF

Background: Reperfusion therapy is critical to myocardial salvage in the event of a myocardial infarction but is complicated by ischemia-reperfusion injury (IRI). Limited understanding of the spatial organization of cardiac cells, which governs cellular interaction and function, has hindered the search for targeted interventions minimizing the deleterious effects of IRI.

Methods: We used imaging mass cytometry to characterize the spatial distribution and dynamics of cell phenotypes and communities in the mouse left ventricle following IRI.

View Article and Find Full Text PDF

Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis.

View Article and Find Full Text PDF

Tissue slicing-assisted digestion (TSAD) of adult cardiomyocytes has shown significant improvements over conventional chunk methods. However, it remains unclear how this method compares to Langendorff perfusion, the current standard of adult cardiomyocyte isolation. Using adult Bama minipigs, we performed cardiomyocyte isolation via these two distinct methods, and compared the resulting cellular quality, including viability, cellular structure, gene expression, and electrophysiological properties, of cardiomyocytes from 3 distinct anatomical regions, namely the left ventricle, right ventricle, and left atrial appendage.

View Article and Find Full Text PDF

Vegetative phase change in plants is regulated by a gradual decline in the level of miR156 and a corresponding increase in the expression of its targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Gibberellin (GA), jasmonic acid (JA), and cytokinin (CK) regulate vegetative phase change by affecting genes in the miR156-SPL pathway. However, whether other phytohormones play a role in vegetative phase change remains unknown.

View Article and Find Full Text PDF

Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention.

View Article and Find Full Text PDF

Cardiovascular diseases are the most common cause of death globally. Accurately modeling cardiac homeostasis, dysfunction, and drug response lies at the heart of cardiac research. Adult human primary cardiomyocytes (hPCMs) are a promising cellular model, but unstable isolation efficiency and quality, rapid cell death in culture, and unknown response to cryopreservation prevent them from becoming a reliable and flexible in vitro cardiac model.

View Article and Find Full Text PDF

By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.

View Article and Find Full Text PDF

Postnatal heart maturation is the basis of normal cardiac function and provides critical insights into heart repair and regenerative medicine. While static snapshots of the maturing heart have provided much insight into its molecular signatures, few key events during postnatal cardiomyocyte maturation have been uncovered. Here, we report that cardiomyocytes (CMs) experience epigenetic and transcriptional decline of cardiac gene expression immediately after birth, leading to a transition state of CMs at postnatal day 7 (P7) that was essential for CM subtype specification during heart maturation.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapies exhibit substantial clinical benefit in different cancers, but relatively low response rates in the majority of patients highlight the need to understand mutual relationships among immune features. Here, we reveal overall positive correlations among immune checkpoints and immune cell populations. Clinically, patients benefiting from ICB exhibited increases for both immune stimulatory and inhibitory features after initiation of therapy, suggesting that the activation of the immune microenvironment might serve as the biomarker to predict immune response.

View Article and Find Full Text PDF

While cell-cell interaction plays a critical role in physiology and disease, a comprehensive understanding of its dynamics in vascular homeostasis and diseases is yet absent. Here, by use of single-cell RNA-sequencing and multi-color staining, we delineate the cellular composition and spatial characterization of human aorta with or without aortic dissection (AD). : Scrutinization of cell subtype alterations revealed significantly changed fibroblast (FB)-smooth muscle cell (SMC) interactions in AD.

View Article and Find Full Text PDF

Cardiac diseases are the leading cause of deaths worldwide; however, to date, there has been limited progress in the development of therapeutic options for these conditions. Animal models have been the most extensively studied methods to recapitulate a wide variety of cardiac diseases, but these models exhibit species-specific differences in physiology, metabolism and genetics, which lead to inaccurate and unpredictable drug safety and efficacy results, resulting in drug attrition. The development of human pluripotent stem cell (hPSC) technology in theory guarantees an unlimited source of human cardiac cells.

View Article and Find Full Text PDF

The burgeoning field of single-cell transcriptomics augments our ability to scrutinize organ systems at unprecedented resolutions. Single-cell RNA sequencing (scRNA-seq) and analytical techniques have shed light on the cellular heterogeneity, developmental trajectories, intercellular communications of the cardiac system, and thus contributed much to the understanding of cardiac development, homeostasis and disorders. Although generalized protocols are well established for scRNA-seq pipelines, customized sample preparation, quality control, and data interpretation are still needed in cardiac research.

View Article and Find Full Text PDF

Purpose Of Review: Cardiomyocytes are the chief cell type in the heart, and are central to the pathogenesis of many cardiac diseases. Increasing recognition of its cellular, molecular, and functional heterogeneity prompted us to review the latest advancements in cardiac health and disease at single-cell resolution.

Recent Findings: Single-cell RNA profiling of cardiac lineage commitment events uncovered immense heterogeneity amongst ostensibly homogeneous cell populations.

View Article and Find Full Text PDF

Cardiac maturation lays the foundation for postnatal heart development and disease, yet little is known about the contributions of the microenvironment to cardiomyocyte maturation. By integrating single-cell RNA-sequencing data of mouse hearts at multiple postnatal stages, we construct cellular interactomes and regulatory signaling networks. Here we report switching of fibroblast subtypes from a neonatal to adult state and this drives cardiomyocyte maturation.

View Article and Find Full Text PDF

Background: Pressure overload-induced pathological cardiac hypertrophy is a common predecessor of heart failure, the latter of which remains a major cardiovascular disease with increasing incidence and mortality worldwide. Current therapeutics typically involve partially relieving the heart's workload after the onset of heart failure. Thus, more pathogenesis-, stage-, and cell type-specific treatment strategies require refined dissection of the entire progression at the cellular and molecular levels.

View Article and Find Full Text PDF

Tumor hypoxia is a major contributor to resistance to anti-cancer therapies. Given that the results of hypoxia-targeted therapy trials have been disappointing, a more personalized approach may be needed. Here we characterize multi-OMIC molecular features associated with tumor hypoxia and identify molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-cancer drugs.

View Article and Find Full Text PDF

Owing to the prevalence and high mortality rates of cardiac diseases, a more detailed characterization of the human heart is necessary; however, this has been largely impeded by the cellular diversity of cardiac tissue and limited access to samples. Here, we show transcriptome profiling of 21,422 single cells-including cardiomyocytes (CMs) and non-CMs (NCMs)-from normal, failed and partially recovered (left ventricular assist device treatment) adult human hearts. Comparative analysis of atrial and ventricular cells revealed pronounced inter- and intracompartmental CM heterogeneity as well as compartment-specific utilization of NCM cell types as major cell-communication hubs.

View Article and Find Full Text PDF

Background: Cardiac differentiation from human pluripotent stem cells provides a unique opportunity to study human heart development in vitro and offers a potential cell source for cardiac regeneration. Compared to the large body of studies investigating cardiac maturation and cardiomyocyte subtype-specific induction, molecular events underlying cardiac lineage commitment from pluripotent stem cells at early stage remain poorly characterized.

Results: In order to uncover key molecular events and regulators controlling cardiac lineage commitment from a pluripotent state during differentiation, we performed single-cell RNA-Seq sequencing and obtained high-quality data for 6879 cells collected from 6 stages during cardiac differentiation from human embryonic stem cells and identified multiple cell subpopulations with distinct molecular features.

View Article and Find Full Text PDF

Enhancer RNA (eRNA) is a type of noncoding RNA transcribed from the enhancer. Although critical roles of eRNA in gene transcription control have been increasingly realized, the systemic landscape and potential function of eRNAs in cancer remains largely unexplored. Here, we report the integration of multi-omics and pharmacogenomics data across large-scale patient samples and cancer cell lines.

View Article and Find Full Text PDF