Publications by authors named "Bingyang Liang"

Orbital angular momentum (OAM) has made it possible to regulate classical waves in novel ways, which is more energy- or information-efficient than conventional plane wave technology. This work aims to realize the transition of antenna radiation mode through the rapid design of an anisotropic dielectric lens. The deep learning neural network (DNN) is used to train the electromagnetic properties of dielectric cell structures.

View Article and Find Full Text PDF

Because of helical phase wavefront distribution, vortex electromagnetic waves are considered to carry more information and additional degrees of freedom than traditional spherical waves. Therefore, a vortex wave carrying orbital angular momentum (OAM) can improve inversion and imaging accuracy. In this work, we revisit the reconstruction of three-dimensional objects in layered composite structures extended with OAM.

View Article and Find Full Text PDF

With balanced spatial resolution, imaging depth, and functional sensitivity, photoacoustic tomography (PAT) hold great promise for human brain imaging. However, the strong acoustic attenuation and aberration of the human skull (∼8 mm thick) are longstanding technical challenges for PAT of the human brain. In this work, we numerically investigated the impacts of the stratified human skull on photoacoustic wave propagation (, the forward model) and PAT image formation (, the inverse model).

View Article and Find Full Text PDF

Non-invasive photoacoustic tomography (PAT) of mouse brains with intact skulls has been a challenge due to the skull's strong acoustic attenuation, aberration, and reverberation, especially in the high-frequency range (>15 MHz). In this paper, we systematically investigated the impacts of the murine skull on the photoacoustic wave propagation and on the PAT image reconstruction. We studied the photoacoustic acoustic wave aberration due to the acoustic impedance mismatch at the skull boundaries and the mode conversion between the longitudinal wave and shear wave.

View Article and Find Full Text PDF