Nuclear export protein 1 (XPO1), a member of the nuclear export protein-p (Karyopherin-P) superfamily, regulates the transport of "cargo" proteins. To facilitate this important process, which is essential for cellular homeostasis, XPO1 must first recognize and bind the cargo proteins. To inhibit this process, small molecule inhibitors have been designed that inhibit XPO1 activity through covalent binding.
View Article and Find Full Text PDFMultiple myeloma (MM) is a highly malignant hematologic cancer that occurs when an atypical plasma cell develops in the bone marrow and reproduces quickly. Despite varies of new drugs have been developed or under clinic trial, MM is still essentially incurable, while XPO1 inhibition has emerged as a promising therapeutic strategy in the treatment of MM. Using the second-generation XPO1 inhibitor KPT-8602 as the lead compound, structure-based optimization provided D4 with high anti-proliferation efficacy (IC = 24 nM in MM.
View Article and Find Full Text PDF: Akt is a widely known serine threonine kinase involved in a series of critical cellular pathways like cell survival and proliferation. With the development of small-molecule Akt inhibitors, new strategies such as covalent, peptide-based, and PROTAC (Proteolysis Targeting Chimera) strategies have also been used the design of Akt inhibitors. On the other hand, due to the specificity of the Akt pathway, the use of Akt modulators in combination therapy and immunotherapy has been disclosed in the past 5 years.
View Article and Find Full Text PDFAnti-cancer immunotherapy, which includes cellular immunotherapy, immune checkpoint inhibitors and cancer vaccines, has transformed the treatment strategies of several malignancies in the past decades. Immune checkpoints blockade (ICB) is the most commonly tested therapy and has the potential to induce a durable immune response in different types of cancers. However, all approved immune checkpoint inhibitors (ICIs) are monoclonal antibodies (mAbs), which are fraught with disadvantages including lack of oral bioavailability, prolonged tissue retention and poor membrane permeability.
View Article and Find Full Text PDFThe enzymes involved in the metabolic pathways in cancer cells have been demonstrated as important therapeutic targets such as the isocitrate dehydrogenase 2 (IDH2). A series of macrocyclic derivatives was designed based on the marketed IDH2 inhibitor AG-221 by using the conformational restriction strategy. The resulted compounds showed moderate to good inhibitory potential against different IDH2-mutant enzymes.
View Article and Find Full Text PDF