Publications by authors named "Bingxing Han"

Article Synopsis
  • The study examined how early-stage osteonecrosis affects the femoral head by comparing different regions of affected bone samples.
  • Eight femoral heads from patients were analyzed using advanced imaging and staining techniques to assess bone structure and cell activity.
  • Findings revealed that certain areas showed microfractures and reduced bone density linked to increased osteoclast activity, highlighting the need for early treatment to promote bone-building osteoblast activity and inhibit destructive osteoclast activity to prevent collapse.
View Article and Find Full Text PDF

MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function.

View Article and Find Full Text PDF

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is degraded by dimethylarginine dimethylaminohydrolase 1 (DDAH1). Emerging evidence suggests that plasma ADMA accumulation, DDAH1 activity/expression reduction, and microRNA-21 (miR-21) upregulation are linked to disease pathology, but the mechanisms remain largely unknown. In the present study, we assessed the potential role of the ADMA-DDAH1-miR-21 pathway in the regulation of the cellular redox state and apoptosis using wild-type (WT) and DDAH1-knockout (KO) immortalized mouse embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF

microRNA is necessary for osteoclast differentiation, function and survival. It has been reported that miR-199/214 cluster plays important roles in vertebrate skeletal development and miR-214 inhibits osteoblast function by targeting ATF4. Here, we show that miR-214 is up-regulated during osteoclastogenesis from bone marrow monocytes (BMMs) with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induction, which indicates that miR-214 plays a critical role in osteoclast differentiation.

View Article and Find Full Text PDF

Nine spirostanol saponins (1-9) and seven mixtures of 25 R and 25 S spirostanol saponin isomers (10-16) were obtained from the seeds of Trigonella foenum-graecum after enzymatic hydrolysis of the furostanol saponin fraction by β-glucosidase. Their structures were determined by NMR and MS spectroscopy. Among them, 1- 4, 6, 8, and 9 were new compounds and five, 11B, 12A, 13B, 14A, and 14B, were new structures observed from seven mixtures.

View Article and Find Full Text PDF