New nano/microcarriers of pesticides represent a highly promising novel field for sustainable pest management. However, despite extensive laboratory research, few studies on the design and evaluation of nanopesticides for field applications exist. In this study, we present a straightforward and green synthetic method of ultrasonic-assisted and hydrogen-bonded self-assembly at the oil-water interface for the synthesis of polylactic acid (PLA) microspheres encapsulating chlorantraniliprole (CAP), with precise control over the size of the microspheres.
View Article and Find Full Text PDFInspired by the reverse thrust generated by fuel injection, micromachines that are self-propelled by bubble ejection are developed, such as microrods, microtubes, and microspheres. However, controlling bubble ejection sites to build micromachines with programmable actuation and further enabling mechanical transmission remain challenging. Here, bubble-propelled mechanical microsystems are constructed by proposing a multimaterial femtosecond laser processing method, consisting of direct laser writing and selective laser metal reduction.
View Article and Find Full Text PDFDespite their notable unidirectional water transport capabilities, Janus membranes are commonly challenged by the fragility of their chemical coatings and the clogging of open microchannels. Here, an on-demand mode-switching strategy is presented to consider the Janus functionality and mechanical durability separately and implement them by simply stretching and releasing the membrane. The stretching Janus mode facilitates unidirectional liquid flow through the hydrophilic micropores-microgrooves channels (PG channels) fabricated by femtosecond laser.
View Article and Find Full Text PDFBackground: Only a few studies that investigated dietary intakes of folate, vitamin B6, and vitamin B12 in relation to cariovascular disease (CVD). This study aimed to assess the association of dietary folate, vitamin B6, and vitamin B12 with CVD in the United States population.
Methods: A cross-sectional analysis of 65,322 adults aged ≥ 20 years who participated in the Third National Health and Nutrition Examination Survey (NHANES III) and NHANES 1999-2018.
Phosphoric acid has been utilized as a favorable alternative to strong acids for the production of cellulose nanospheres (CNS) in recent years, partly owing to the reduced reliance on mechanical assistance. In the present study, phosphoric acid hydrolysis was applied to synthesize CNS from natural cotton pulp. Compared to reported long-time hydrolysis over 12 h, reduced time of 4 h is achieved for CNS production.
View Article and Find Full Text PDFStructural color (SC) has enormous potential for improving the visualization and identification of functional micro/nano structures for information encryption and intelligent sensing. Nevertheless, achieving the direct writing of SCs at the micro/nano scale and the change of color in response to external stimuli simultaneously is rather challenging. To this end, we directly printed woodpile structures (WSs) utilizing femtosecond laser two-photon polymerization (fs-TPP), which demonstrated obvious SCs under an optical microscope.
View Article and Find Full Text PDFRod-shaped cellulose nanocrystals (CNCs), also called cellulose nanorods (CNRs), possess anisotropic properties that allow for their self-organization into chiral nematic liquid crystals. Interestingly, spherical cellulose nanocrystals (cellulose nanospheres, CNSs) have also been shown to form a chiral liquid-crystalline phase in recent years. Herein, to understand how the similar assembly takes places as particle dimension changes, the organization features of CNSs were investigated.
View Article and Find Full Text PDFWe hypothesized that the prevalence of hypertension is related to B-vitamin intake in the general population, but it has not been sufficiently studied. This study aimed to investigate the intakes of dietary folate, vitamin B, and vitamin B concerning hypertension in US adults. A total of 55 569 adults from National Health and Nutrition Examination Survey III and 1999-2014 were included in this study.
View Article and Find Full Text PDF(Sims) Kosterm. (), which belongs to the genus in the family Lauraceae, is widely distributed in Asia and the temperate, tropical regions of North America. Its roots and leaves have been used for thousands of years as traditional Chinese medicine and/or functional food.
View Article and Find Full Text PDFThe targeted identification of α-glucosidase inhibitors from the crude ethyl acetate of (L.) Pic. Serm () was guided by high-resolution inhibition profiling.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2022
Rapid urbanization has reshaped land cover and the ecological environment, potentially improving or deteriorating soil organic carbon (SOC). However, the response of SOC to urbanization has not yet been fully exploited. Herein, by using the land-use transfer matrix, the Sen & Mann-Kendall tests, the Hurst index, and a geographical and temporal weighted regression (GTWR) model, as well as an urban-rural gradient perspective, we assessed the dynamic response of SOC to Beijing's urbanization from 2001 to2015 and identified the main drivers.
View Article and Find Full Text PDFEthnopharmacological Relevance: Tyrosinase, the key rate-limiting enzyme for melanogenesis, is one of the main targets for skin senescence and some pigmented skin diseases, such as albinism and melanoma. Tyrosinase inhibitors are capable of reducing melanin generation and deposition in the skin through blocking the reaction chain of formation. Thus, it has been used for anti-melanoma and showed the potential to be developed into novel skin whitening and spot removing products.
View Article and Find Full Text PDFBiomimetic stimuli-responsive structure colors (SCs) can improve the visualization and identification in the micro functional structure field such as information encryption/decryption and smart actuators. However, it is still challenging to develop the ability to 4D print arbitrary submerged colorful patterns with stimuli-responsive materials at the microscale. Herein, a hydrogel photoresist with feature resolution (98 nm) for the fabrication of 4D microscopic SCs by the femtosecond direct laser writing method is developed.
View Article and Find Full Text PDFMicromachines with high environmental adaptability have the potential to deliver targeted drugs in complex biological networks, such as digestive, neural, and vascular networks. However, the low processing efficiency and single processing material of current 4D printing methods often limit the development and application of shape-morphing micromachines (SMMs). Here, two 4D printing strategies are proposed to fabricate SMMs with pH-responsive hydrogels for complex micro-networks traversing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Gating systems have been extensively researched in energy harvesting, lab-on-chip applications, and so forth. However, the controlled drug delivery system with artificial hydrogel-based porous gating systems (HPGSs) is rarely reported. Herein, a biomimetic HPGS with a pH-responsive hydrogel as the valve and polydimethylsiloxane as the frame is fabricated by in situ femtosecond laser microdrilling and subsequent ultraviolet exposure.
View Article and Find Full Text PDFThis work studies the degradation of chlortetracycline hydrochloride (CTC) by activated peroxymonosulfate (PMS) with natural manganese sand (NMS). Meanwhile, the NMS was characterized and analyzed by isothermal nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscope (SEM). It can be induced that NMS material may contain C, O, Al, Si, Fe, Mn, and K, and the proportion of each is 6%, 9%, 13%, 34%, 27%, 5%, and 6%.
View Article and Find Full Text PDFFunctional microdevices based on responsive hydrogel show great promise in targeted delivery and biomedical analysis. Among state-of-the-art techniques for manufacturing hydrogel-based microarchitectures, femtosecond laser two-photon polymerization distinguishes itself by high designability and precision, but the point-by-point writing scheme requires mechanical apparatuses to support focus scanning. In this work, by predesigning holograms combined with lens phase modulation, multiple femtosecond laser spots are holographically generated and shifted for prototyping of three-dimensional shape-morphing structures without any moving equipment in the construction process.
View Article and Find Full Text PDFMedicinal plants are considered to be a critical source of novel compounds and pharmacophores. The genus Ardisia, consisting of approximately 500 species, is the largest genus in the Myrsinaceae family. Ardisia species are widely distributed throughout tropical and subtropical regions of the world and have been used for the treatment of cancer, hypertension, irregular menstruation, gonorrhea, diarrhea and postnatal syndromes, among others.
View Article and Find Full Text PDFEnviron Monit Assess
April 2022
With the rapid development of China's social economy, the phenomenon of unbalanced regional economic development is increasingly obvious. The shortage of water resources in northwest China is an important constraint to local development. The study on the water resources carrying capacity of the Zhuanglang River Basin plays an important role in the development of local economy; thus, we evaluate the water resources situation of Zhuanglang River Basin by using hydrology-related calculation method, combining with field investigation, visiting relevant departments, and referring to relevant data.
View Article and Find Full Text PDFPhytochemical investigation of Lycopodium cernuum L. afforded seven undescribed serratene triterpenoids named 3β, 21β-dihydroxyserra-14-en-24-oic acid-3β-(5'-hydroxybenzoate) (1), 3β, 21β, 24-trihydroxyserrat-14-en-3β-(5'-hydroxyl benzoate) (2), 3β, 14α, 15α, 21β-tetrahydroxyserratane-24-methyl ester (3), 3β, 14α, 21β-trihydroxyserratane-15α-(4'-methoxy-5'-hydroxybenzoate)-24-methyl ester (4), 3β, 14α, 21β-trihydroxyserratane-15α-(4'-methoxy-5'-hydroxybenzoate) (5), 3β-hydroxy-21β-acetate-16-oxoserrat-14-en-24-oic acid (6), 3β, 21β-dihydroxy-16α, 29-epoxyserrat-14-en-24-methyl ester (7), together with eleven known compounds (8-18), whose chemical structures were elucidated through spectroscopic analysis of HRESIMS, 1D NMR, 2D NMR and comparison between the literature. All compounds were evaluated for their α-glucosidase inhibitory activity for the first time.
View Article and Find Full Text PDFEthnopharmacological Relevance: The root of Paeonia lactiflora is a traditionally-used whitening medicine in China for thousands of years. Although some tyrosinase inhibitors and/or antioxidants such as 1,2,3,4,6-pentagalloylglucose, gallic acid, have been isolated and identified, their tyrosinase inhibition pathway (monophenolase or diphenolase inhibition, or both two) have not been systematically studied and the underlying tyrosinase inhibition mechanism has not been revealed yet. Moreover, the exploring of new natural tyrosinase inhibitors and antioxidants is urgently needed.
View Article and Find Full Text PDFThe ubiquitin-specific protease 7 (USP7)-murine double minute 2 (MDM2)-p53 network plays an important role in the regulation of p53, a tumor suppressor which plays critical roles in regulating cell growth, proliferation, cell cycle progression, apoptosis and immune response. The overexpression of USP7 and MDM2 in human cancers contributes to cancer initiation and progression, and their inhibition reactivates p53 signalings and causes cell cycle arrest and apoptosis. Herein, the current state of pharmacological characterization, potential applications in cancer treatment and mechanism of action of small molecules used to target and inhibit MDM2 and USP7 proteins are highlighted, along with the outcomes in clinical and preclinical settings.
View Article and Find Full Text PDF