Publications by authors named "Bingqian Shan"

Supported noble metal nanocatalysts typically exhibit strong crystal plane dependent catalytic behavior, but their working mechanism is still unclear. Herein, using anatase TiO with well-exposed crystal facets of {101}, {100} and {001} as a prototype support, Pd- and Pt-based supported TiO nanocatalysts (TiO-Pd and TiO-Pt) were prepared by chemical reduction with NaBH as reducer, and they showed a distinct metal-dependent crystal facet effect in the selective hydrogenation of cinamaldehyde (CAL). For Pd-based nanocatalysts, most Pd species on the {100} plane of TiO are present in the oxidized form with positive charges and unexpectedly show higher reactivity than the Pd species in the zero-valence state on the {101} and {001} planes.

View Article and Find Full Text PDF

Aggregation-induced emission (AIE) is an effective strategy for improving the photoluminescence (PL) performance of metal nanoclusters (MNCs). However, the origin of AIE in MNCs is still not fully understood, which is pivotal for the design of AIE luminogens (AIEgens). Here, water soluble silver nanoclusters (Ag NCs) with AIE properties were synthesized.

View Article and Find Full Text PDF

In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.

View Article and Find Full Text PDF

Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir-Hinshelwood (L-H) mechanism when sodium borohydride (NaBH) is used as the sacrificial reductant. Herein, with Pt-Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride the bimolecular L-H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD and DO) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP.

View Article and Find Full Text PDF

Nontraditional intrinsic luminescence (NTIL) which always accompanied with aggregation-induced emission (AIE) features has received considerable attention due to their importance in the understanding of basic luminescence principle and potential practical applications. However, the rational modulation of the NTIL of nonconventional luminophores remains difficult, on account of the limited understanding of emission mechanisms. Herein, the emission color of nonconjugated poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) can be readily regulated from blue to red by controlling the alkalinity during the hydrolysis process.

View Article and Find Full Text PDF

On the origin of photoluminescence of noble metal NCs, there are always hot debates: metal-centered quantum-size confinement effect VS ligand-centered surface state mechanism. Herein, we provided solid evidence that structural water molecules (SWs) confined in the nanocavity formed by surface-protective-ligand packing on the metal NCs are the real luminescent emitters of Au-Ag bimetal NCs. The Ag cation mediated Au-Ag bimetal NCs exhibit the unique pH-dependent dual-emission characteristic with larger Stokes shift up to 200 nm, which could be used as potential ratiometric nanosensors for pH detection.

View Article and Find Full Text PDF

Molecules confined in the nanocavity and nanointerface exhibit rich, unique physicochemical properties, e.g., the chromophore in the β-barrel can of green fluorescent protein (GFP) exhibits tunable bright colors.

View Article and Find Full Text PDF

Intrinsically, free water molecules are a colourless liquid. If it is colourful, why and how does it emit the bright colours? We provided direct evidence that when water was trapped into the sub-nanospace of zeolites, the structural water molecules (SWs) exhibited strong tunable photoluminescence (PL) emissions from blue to red colours with unprecedented ultra-long lifetimes up to the second scale at liquid nitrogen temperature. Further controlled experiments and combined characterizations by time-resolved steady-state and ultra-fast femtosecond (fs) transient optical spectroscopy showed that the singly adsorbed hydrated hydroxide complex {OH·HO} as SWs in the confined nanocavity is the true emitter centre, whose PL efficiency strongly depends on the type and stability of the SWs, which is dominated by H-bond interactions, such as the solvent effect, pH value and operating temperature.

View Article and Find Full Text PDF

Concerted electron and proton transfer is a key step for the reversible conversion of molecular hydrogen in both heterogeneous nanocatalysis and metalloenzyme catalysis. However, its activation mechanism involving electron and proton transfer kinetics remains elusive. With the most widely used catalytic hydride reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as a model reaction, we evaluate the catalytic activity of noble metal nanoparticles (NPs) trapped in porous silica in aqueous NaBH4 solution.

View Article and Find Full Text PDF

The interest in the design and controlled fabrication of dendritic mesoporous silica nanospheres (DMSNs) emanates from their widespread application in drug-delivery carriers, catalysis and nanodevices owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas. A variety of synthesis strategies have been reported, but there is no basic consensus on the elucidation of the pore structure and the underlying formation mechanism of DMSNs. Although all the DMSNs show a certain degree of similarity in structure, do they follow the same synthesis mechanism? What are the exact pore structures of DMSNs? How did the bimodal pore size distributions kinetically evolve in the self-assembly? Can the relative fractions of small mesopores and dendritic large pores be precisely adjusted? In this review, by carefully analysing the structures and deeply understanding the formation mechanism of each reported DMSN and coupling this with our research results on this topic, we conclude that all the DMSNs indeed have the same mesostructures and follow the same dynamic self-assembly mechanism using microemulsion droplets as super templates in the early reaction stage, even without the oil phase.

View Article and Find Full Text PDF

Recently, metal nanoclusters (MNCs) emerged as a new class of luminescent materials and have attracted tremendous interest in the area of luminescence-related applications due to their excellent luminous properties (good photostability, large Stokes shift) and inherent good biocompatibility. However, the origin of photoluminescence (PL) of MNCs is still not fully understood, which has limited their practical application. In this mini-review, focusing on the origin of the photoemission emission of MNCs, we simply review the evolution of luminescent mechanism models of MNCs, from the pure metal-centered quantum confinement mechanics to ligand-centered p band intermediate state (PBIS) model via a transitional ligand-to-metal charge transfer (LMCT or LMMCT) mechanism as a compromise model.

View Article and Find Full Text PDF

Mesoporous nanospheres are highly regarded for their applications in nanomedicine, optical devices, batteries, nanofiltration, and heterogeneous catalysis. In the last field, the dendritic morphology, which favors molecular diffusion, is a very important morphology known for silica, but not yet for carbon. A one-pot, easy, and scalable co-sol-gel route by using the triphasic resol-surfactant-silica system is shown to yield the topologies of dendritic and core-shell-corona mesoporous sister nanospheres by inner radial phase speciation control on a mass-transfer-limited process, depending on the relative polycondensation rates of the resol polymer and silica phases.

View Article and Find Full Text PDF