Modulating and elevating the operating voltage of a given cathode is a significant challenge to enhance the energy density of secondary batteries without sacrificing power output. The chemical coordination strongly influences the energy levels of d-orbitals of redox cations in cathode materials, which tie to their operating voltage. In contrast to concentrated studies on enhancing the specific capacity, in this study, we choose bi-layered hydrated vanadium pentoxide as the model to modulate the d-orbital energy levels through local chemical coordination manipulation, achieving a higher operating voltage in rechargeable aqueous zinc ion batteries.
View Article and Find Full Text PDFBased on the district and county activity level data of different types of atmospheric ammonia (NH) emission sources in the Xiamen-Zhangzhou-Quanzhou (XZQ) Region and the modified emission factors, an ammonia emission inventory with a spatial resolution of 1 km×1 km in 2017 was established. In addition, the annual variations in NH emission from 2015 to 2020 in this region were analyzed. The results showed that the emission of NH in the XZQ Region in 2017 was 27.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2022
We used C-radiolabelling to study the non-extractable residues (NERs) formation of tetrabromobisphenol A (TBBPA) in a humic acid (HA) suspension under catalysis of laccase in the presence of copper. When entering the suspension after TBBPA adsorbing to HA supramolecular associates, Cu at low concentrations (even without toxicity to laccase) significantly reduced the amount and first-order kinetic constant of the NER formation, while Cu had no significant effect on the formation after it was complexed with HA. The inhibition effect of Cu on the NER formation is explained to be attributed to the prevention of laccase-induced oxidation of TBBPA in the voids of HA associates by complexation of Cu with periphery molecules of the associates.
View Article and Find Full Text PDFCombination of ultraviolet and chloramine (i.e., UV/chloramine) treatment has been attracting increasingly attention in recent years due to its high efficiency in removing trace organic contaminants.
View Article and Find Full Text PDFThe Yellow River is the second longest river in China, which plays a very important role in the transportation of nutrients at the regional and even global scale. Water and sediment samples were collected at five sites located at the Gaocun to Lijin reaches along the Yellow River and the distribution characteristics of different phosphorus species were analyzed. The concentration of suspended particulate matter (SPM) in water ranged from 1.
View Article and Find Full Text PDFStudies have shown the main fate of the flame retardant tetrabromobisphenol A (TBBPA) in soils is the formation of bound residues, and mechanisms on it are less-understood. This study investigated the effect of birnessite (δ-MnO2), a naturally occurring oxidant in soils, on the formation of bound residues. (14)C-labeled TBBPA was used to investigate the pH dependency of TBBPA bound-residue formation to two soil humic acids (HAs), Elliott soil HA and Steinkreuz soil HA, in the presence of δ-MnO2.
View Article and Find Full Text PDFTetrabromobisphenol A (TBBPA) is the brominated flame retardant with the highest production volume and its bioaccumulation in environment has caused both human health and environmental concerns, however the fate and metabolism of TBBPA in plants is unknown. We studied the fate, metabolites, and transformation of (14)C-labeled TBBPA in rice cell suspension culture. During the incubation for 14 days, TBBPA degradation occurred continuously in the culture, accompanied by formation of one anisolic metabolite [2,6-dibromo-4-(2-(2-hydroxy)-propyl)-anisole] (DBHPA) (50% of the degraded TBBPA) and cellular debris-bound residues (46.
View Article and Find Full Text PDFLittle is known about the effects of biochar on the fate and behavior of micropollutants in soil, especially in the presence of soil macrofauna. Using a 14C-tracer, we studied the fate of 2,4-dichlorophenol and phenanthrene, after 30 days in soil in the presence of a biochar (0-5%, dry weight) produced from China fir at 400 °C and/or the earthworm Metaphire guillelmi. Application of the biochar significantly reduced the degradation and mineralization of both pollutants and strongly increased the accumulation of their metabolites in soil.
View Article and Find Full Text PDFBound-residue formation is a major dissipation process of most organic xenobiotics in soil. However, both the formation and nature of bound residues of tetrabromobisphenol A (TBBPA) in soil are unclear. Using a 14C-tracer, we studied the fate of TBBPA in an oxic soil during 143 days of incubation.
View Article and Find Full Text PDFThe fate of the most commonly used brominated flame retardant, tetrabromobisphenol A (TBBPA), in wastewater treatment plants is obscure. Using a (14)C-tracer, we studied TBBPA transformation in nitrifying activated sludge (NAS). During the 31-day incubation, TBBPA transformation (half-life 10.
View Article and Find Full Text PDFContamination by tetrabromobisphenol A (TBBPA), the most widely used brominated flame retardant, is a matter of environmental concern. Here, we investigated the fate and metabolites of (14)C-TBBPA in a submerged soil with an anoxic-oxic interface and planted or not with rice (Oryza sativa) and reed (Phragmites australis) seedlings. In unplanted soil, TBBPA dissipation (half-life 20.
View Article and Find Full Text PDFTransformation of ring-(14)C-labelled tetrabromobisphenol-A (TBBPA) was studied in an oxic soil slurry with and without amendment with Sphingomonas sp. strain TTNP3, a bacterium degrading bisphenol-A. TBBPA degradation was accompanied by mineralization and formation of metabolites and bound-residues.
View Article and Find Full Text PDFFate of nonylphenol (NP) in soils and the effects of nitrogen fertilizers are unclear. Using (14)C-tracer, we studied the aerobic and anaerobic degradation of 4-NP111 in a paddy red soil amended without and with ammonium chloride. Under oxic conditions, 4-NP111 had a half-life of 16.
View Article and Find Full Text PDFTetrabromobisphenol A (TBBPA) is one of the most commonly used flame retardants and has become an environmental contaminant worldwide. We studied the fate of (14)C-labeled TBBPA in soil under static anoxic (195 days) and sequential anoxic (125 days)-oxic (70 days) conditions. During anoxic incubation, TBBPA dissipated with a half-life of 36 days, yielding four debromination metabolites: bisphenol A (BPA) and mono-, di-, and tribrominated BPA.
View Article and Find Full Text PDFConcerns on the potential risks of engineered nanoparticles to the environment are increasing; however, little is known about the effects of carbon nanotubes (CNTs) on the environmental fate of hydrophobic organic pollutants in soil. We incubated radioactive labeled 2,4-dichlorophenol ((14)C-2,4-DCP) in a soil in the presence of various concentrations (0, 2, 20, and 2000 mg kg(-1) dry soil) of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes, and determined the mineralization, degradation, and residue distribution of 2,4-DCP in the soil. CNTs were added to the soil either after the spiking of (14)C-2,4-DCP or together with (14)C-2,4-DCP as a mixture.
View Article and Find Full Text PDFEnviron Sci Technol
October 2011
Using (14)C- and (13)C-ring-labeling, degradation of five p-nonylphenol (4-NP) isomers including four branched (4-NP(38), 4-NP(65), 4-NP(111), and 4-NP(112)) and one linear (4-NP(1)) isomers in a rice paddy soil was studied under oxic conditions. Degradation followed an availability-adjusted first-order kinetics with the decreasing order of half-life 4-NP(111) (10.3 days) > 4-NP(112) (8.
View Article and Find Full Text PDF