The leaching and vertical migration risks of antibiotic resistance genes (ARGs) from fertilized soil to groundwater poses a significant threat to ecological and public safety. Insect fertilizer, particularly black soldier fly organic fertilizer (BOF), renowned for its minimal antibiotic resistance, emerge as a promising alternative for sustainable agricultural fertilization. This study employs soil-column leaching experiments to evaluate the impact of BOF on the leaching behavior of ARGs.
View Article and Find Full Text PDFTo effectively address the contamination caused by antibiotic misuse, this study was conducted to enhance the removal of amoxicillin (AMX) and penicillin sodium (PEN) by incorporating black soldier fly larvae (BSFL). The results showed that BSFL increased the degradation rates of AMX and PEN to 71.00 % and 80.
View Article and Find Full Text PDFThe black solider fly larvae (BSFL) can efficiently convert nitrogen in organic waste into insect protein. Bacillus subtilis S4, an efficient protein-degrading bacterium from the BSFL gut, was isolated and identified to explore the mechanism of nutrient metabolism underlying BSFL nitrogen utilization. Results showed that B.
View Article and Find Full Text PDFAntibiotic resistance in soil introduced by organic fertilizer application pose a globally recognized threat to human health. Insect organic fertilizer may be a promising alternative due to its low antibiotic resistance. However, it is not yet clear how to regulate soil microbes to reduce antibiotic resistance in organic fertilizer agricultural application.
View Article and Find Full Text PDFThe increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste.
View Article and Find Full Text PDFThe increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.
View Article and Find Full Text PDFBackground: Acinetobacter baumannii is a gram-negative aerobic bacillus that is commonly causes of hospital-acquired infections. Community-acquired pneumonia caused by Acinetobacter baumannii (CAP-Ab) is rare but fatal if diagnosis and treatment are delayed. Conventional culture of clinical specimens is the main method for clinical diagnosis of A.
View Article and Find Full Text PDF