Publications by authors named "Bingning Zhang"

A significant impediment persists in developing multicomponent nanomedicines designed to dismantle the heat shock protein (HSP)-based protective mechanism of malignant tumors during photothermal therapy. Herein, well-defined PEGylated phospholipid micelles were utilized to coencapsulate quercetin (QUE, a natural anticancer agent and potent HSP inhibitor) and indocyanine green (ICG, a photothermal agent) with the aim of achieving synchronized and synergistic drug effects. The subsequent investigations validated that the tailored micellar system effectively enhanced QUE's water solubility and augmented its cellular internalization efficiency.

View Article and Find Full Text PDF

Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG--PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species.

View Article and Find Full Text PDF

The aim of this investigation is to clarify the effect of D-α-tocopheryl succinate (vitamin E succinate, VES) and distearoylphosphatidyl ethanolamine-poly(ethylene glycol) (DSPE-PEG) on the encapsulation and controlled release of doxorubicin (DOX) in nano-assemblies and their consequences on the anti-tumor efficacy of DOX. DOX molecules were successfully loaded into the hybrid micelles with VES and DSPE-PEG (VDPM) via thin-film hydration method, exhibiting a small hydrodynamic particle size (~30 nm) and a weak negative zeta potential of around -5 mv. The obtained DOX-loaded VDPM2 displayed retarded DOX release at pH of 7.

View Article and Find Full Text PDF