Baeyer-Villiger monooxygenases (BVMOs) can catalyze the asymmetric sulfoxidation to form pharmaceutical prazoles in environmentally friendly approach. In this work, the thermostable BVMO named PockeMO had high sulfoxidation activity towards rabeprazole sulfide to form (R)-rabeprazole but demonstrated significant overoxidation activity to form undesired sulfone by-product. To address this issue, the enzyme was engineered based on the computer assisted comparison for the substrate binding conformations.
View Article and Find Full Text PDFEnantiopure 1,2-diols are widely used in the production of pharmaceuticals, cosmetics, and functional materials as essential building blocks or bioactive compounds. Nevertheless, developing a mild, efficient and environmentally friendly biocatalytic route for manufacturing enantiopure 1,2-diols from simple substrate remains a challenge. Here, we designed and realized a step-wise biocatalytic cascade to access chiral 1,2-diols starting from aromatic aldehyde and formaldehyde enabled by a newly mined benzaldehyde lyase from Sphingobium sp.
View Article and Find Full Text PDFS-omeprazole and R-rabeprazole are important proton pump inhibitors (PPIs) used for treating peptic disorders. They can be biosynthesized from the corresponding sulfide catalyzed by Baeyer-Villiger monooxygenases (BVMOs). During the development of BVMOs for target sulfoxide preparation, stereoselectivity and overoxidation degree are important factors considered most.
View Article and Find Full Text PDFEctoine, so-called tetrahydropyrimidine, is an important osmotic adjustment solute and widely applied in cosmetics and protein protectant. Some attempts have been made to improve the ectoine productivity. However, the strains with both high ectoine production capacity and high glucose conversion were still absent so far.
View Article and Find Full Text PDFJ Agric Food Chem
July 2024
Hydroxytyrosol, a naturally occurring compound with antioxidant and antiviral activity, is widely applied in the cosmetic, food, and nutraceutical industries. The development of a biocatalytic approach for producing hydroxytyrosol from simple and readily accessible substrates remains a challenge. Here, we designed and implemented an effective biocatalytic cascade to obtain hydroxytyrosol from 3,4-dihydroxybenzaldehyde and l-threonine via a four-step enzymatic cascade composed of seven enzymes.
View Article and Find Full Text PDFThe synthesis of steroids is challenging through multistep steroidal core modifications with high site-selectivity and productivity. In this work, a novel enzymatic cascade system was constructed for synthesis of testolactone by specific C17 lactonization/Δ-dehydrogenation from inexpensive androstenedione using an engineered polycyclic ketone monooxygenase (PockeMO) and an appropriate 3-ketosteroid-Δ-dehydrogenase (ReKstD). The focused saturation mutagenesis in the substrate binding pocket was implemented for evolution of PockeMO to eliminate the bottleneck effect.
View Article and Find Full Text PDFEsomeprazole is the most popular proton pump inhibitor for treating gastroesophageal reflux disease. Previously, a phenylacetone monooxygenase mutant LnPAMOmu15 (LM15) was obtained by protein engineering for asymmetric synthesis of esomeprazole using pyrmetazole as substrate. To scale up the whole cell asymmetric synthesis of esomeprazole and reduce the cost, in this work, an Escherichia coli whole-cell catalyst harboring LM15 and formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) were constructed through optimized gene assembly patterns.
View Article and Find Full Text PDFEthnopharmacological Relevance: Phellodendron chinense C.K.Schneid(P.
View Article and Find Full Text PDFBackground: The aqueous extract of the dried buds of Syzygium aromaticum (SAAE) have the potential to alleviate Helicobacter pylori infection, but the specific molecular mechanism has not been fully elucidated.
Purpose: This study aimed to investigate the underlying mechanisms of SAAE on H. pylori pathogenicity.
Norepinephrine, a kind of β-adrenergic receptor agonist, is commonly used for treating shocks and hypotension caused by a variety of symptoms. The development of a straightforward, efficient and environmentally friendly biocatalytic route for manufacturing norepinephrine remains a challenge. Here, we designed and realized an artificial biocatalytic cascade to access norepinephrine starting from 3, 4-dihydroxybenzaldehyde and L-threonine mediated by a tailored-made L-threonine transaldolase PsLTTA-Mu1 and a newly screened tyrosine decarboxylase ErTDC.
View Article and Find Full Text PDF1,3,6-Trigalloylglucose is a natural compound that can be extracted from the aqueous extracts of ripe fruit of Retz, commonly known as "". The potential anti- (HP) activity of this compound has not been extensively studied or confirmed in scientific research. This compound was isolated using a semi-preparative liquid chromatography (LC) system and identified through Ultra-high-performance liquid chromatography-MS/MS (UPLC-MS/MS) and Nuclear Magnetic Resonance (NMR).
View Article and Find Full Text PDFEthnopharmacological Relevance: Terminalia chebula Retz., known as the King of Traditional Tibetan Medicine, is widely used for treating various ailments, particularly stomach disorders. It exhibited inhibitory activity against helicobacter pylori.
View Article and Find Full Text PDFBovine lactoferrin peptide (LFcinB), as an antimicrobial peptide, is expected to be an alternative of antibiotics owing to its broad-spectrum antimicrobial activity and specific mechanism. However, the weak antimicrobial activity, high hemolysis, and poor stability of LFcinB limited its applications in the field of biomedicine, food and agriculture. In order to improve the antimicrobial activity of LFcinB, five mutants were designed rationally, of which mutant LF4 (M10W/P16R/A24L) showed highest antimicrobial activity.
View Article and Find Full Text PDFDehydroepiandrosterone (DHEA) is an important neurosteroid hormone to keep human hormonal balance and reproductive health. However, DHEA was always produced with impurities either by chemical or biological method and required high-cost purification before the medical use. To address this issue, a novel chemoenzymatic process was proposed and implemented to produce DHEA.
View Article and Find Full Text PDFBaeyer-Villiger monooxygenase (BVMO) mediated sulfoxidation is a sustainable approach for the synthesis of esomeprazole. In this work, a novel phenylacetone monooxygenase from Limnobacter sp. (LnPAMO) was found to have trace activity for synthesis of enantiopure esomeprazole.
View Article and Find Full Text PDFEnzyme Microb Technol
June 2022
Ethyl 3-hydroxy-3-phenylpropionate (EHPP), (R)-EHPP or (S)-EHPP, is an important chiral intermediate for pharmaceuticals. Its synthesis from ethyl benzoyl acetate (EBA) by alcohol dehydrogenase is regarded as a green method. However, scarcely any alcohol dehydrogenase has been reported competent in asymmetric synthesis of chiral EHPP at high EBA loading.
View Article and Find Full Text PDFAlginate oligosaccharides are enzymolysis products of alginate with versatile bioactivities and their industrial preparation was limited by the insufficient activity and unsatisfying thermostability of alginate lyases. The structure-function information about PL18 alginate lyases was seldom reported since which few positive mutants of PL18 alginate lyases were generated. In present study, a mutant of PL18 alginate lyase E226K was expressed intracellularly and taken as parent for further modification.
View Article and Find Full Text PDFl-Threonine aldolase from Actinocorallia herbida (AhLTA) is an ideal catalyst for producing l-threo-4-methylsulfonylphenylserine [(2S,3R)-1 b], a key chiral precursor for florfenicol and thiamphenicol. The moderate C stereoselectivity is the main obstacle to the industrial application of AhLTA. To address this issue, a combinatorial active-site saturation test (CAST) together with sequence conservatism analysis was applied to engineer the AhLTA toward improved C stereoselectivity.
View Article and Find Full Text PDF(2S, 3R)-4-methylsulfonylphenylserine [(2S, 3R)-MPS], a key chiral precursor for antibiotics florfenicol and thiamphenicol, could be asymmetrically synthesized by l-threonine transaldolase (LTTA) coupled with an acetaldehyde elimination system. The low efficiency of acetaldehyde elimination system blocked further accumulation of (2S, 3R)-MPS. To address this issue, strengthening acetaldehyde elimination system and enzyme self-assembly strategy were combined to accelerate biosynthesis of (2S, 3R)-MPS.
View Article and Find Full Text PDF(R)-3-Chloro-1-phenyl-1-propanol ((R)-CPPO) is an important chiral intermediate for antidepressants. For its efficient biosynthesis, the carbonyl reductase EbSDR8 was engineered to asymmetrically reduce the unnatural substrate 3-chloro-1-phenyl-1-propanone (3-CPP) at high concentrations. Molecular docking and molecular dynamics simulations of the resulting mutants suggested enlarged substrate binding pocket and more reasonable interactions between the enzyme and the substrate or cofactor as the reasons for the enhanced catalytic activity and thus the remarkably improved conversion of high-concentration 3-CPP.
View Article and Find Full Text PDFL-threonine transaldolase(PsLTTA) could asymmetric synthesize β-hydroxy-α-amino acids (HAAs) with excellentstereoselectivity, while the poor yield limited its further application. Here we provided a combinatorial strategy to improve HAAs production, by directed evolution of PsLTTA towards enhanced activity and introducing an acetaldehyde elimination system to avoid acetaldehyde over-accumulation. A novel high throughput screening (HTS) method for evaluating PsLTTA activity was developed andapplied for directed evolution of PsLTTA.
View Article and Find Full Text PDFEnzyme Microb Technol
August 2019
The recombinant rAgaZC-1 was a family GH50 β-agarase from Vibrio sp. ZC-1 (CICC 24670). In this paper, the mutant D622G (i.
View Article and Find Full Text PDFAs a chiral precursor for the important anticoagulant Edoxaban, enantioselective synthesis of ()-3-cyclohexene-1-carboxylic acid is of great significance. The complicated procedures and generation of massive solid waste discourage its chemical synthesis, and the alternative biocatalysis route calls for an enzyme capable of asymmetric hydrolysis of racemic methyl-3-cyclohexene-1-carboxylate. To this end, we engineered the esterase BioH for improved -enantioselectivity via rational design.
View Article and Find Full Text PDFIsoprene, as a versatile bulk chemical, has wide industrial applications. Here, we attempted to improve isoprene biosynthesis in Saccharomyces cerevisiae by simultaneous strengthening of precursor supply and conversion via a combination of pathway compartmentation and protein engineering. At first, a superior isoprene synthase mutant ISPSLN was created by saturation mutagenesis, leading to almost 4-fold improvement in isoprene production.
View Article and Find Full Text PDF