Background: Several nitric oxide (NO) generating devices have been developed to deliver NO between 1 part per million (ppm) and 80 ppm. Although inhalation of high-dose NO may exert antimicrobial effects, the feasibility and safety of producing high-dose (more than 100 ppm) NO remains to be established. In the current study, we designed, developed, and tested three high-dose NO generating devices.
View Article and Find Full Text PDFElectronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils.
View Article and Find Full Text PDFSickle cell disease (SCD) is an inherited disorder of hemoglobin (Hb); approximately 300,000 babies are born worldwide with SCD each year. In SCD, fibers of polymerized sickle Hb (HbS) form in red blood cells (RBCs), which cause RBCs to develop their characteristic "sickled" shape, resulting in hemolytic anemia and numerous vascular complications including vaso-occlusive crises. The development of novel antisickling compounds will provide new therapeutic options for patients with SCD.
View Article and Find Full Text PDFNitric oxide (NO) activity in vivo is the combined results of its direct effects, the action of its derivatives generated from NO autoxidation, and the effects of nitrosated compounds. Measuring NO metabolites is essential to studying NO activity both at vascular levels and in other tissues, especially in the experimental settings where exogenous NO is administered. Ozone-based chemiluminescence assays allow precise measurements of NO and NO metabolites in both fluids (including plasma, tissue homogenates, cell cultures) and gas mixtures (e.
View Article and Find Full Text PDFBackground: High-dose (≥ 80 ppm) inhaled nitric oxide (INO) has antimicrobial effects. We designed a trial to test the preventive effects of high-dose NO on coronavirus disease 2019 (COVID-19) in health care providers working with patients with COVID-19. The study was interrupted prematurely due to the introduction of COVID-19 vaccines for health care professionals.
View Article and Find Full Text PDFBackground: There is an increasing interest in safely delivering high dose of inhaled nitric oxide (NO) as an antimicrobial and antiviral therapeutics for spontaneously breathing patients. A novel NO delivery system is described.
Methods: We developed a gas delivery system that utilizes standard respiratory circuit connectors, a reservoir bag, and a scavenging chamber containing calcium hydroxide.
Objectives: To test the feasibility, safety, and efficacy of intratracheal delivery of nitric oxide (NO) generated from air by pulsed electrical discharge via a Scoop catheter.
Study Design: We studied healthy 3- to 4-month-old lambs weighing 34 ± 4 kg (mean ± SD, n = 6). A transtracheal Scoop catheter was inserted through a cuffed tracheostomy tube.
Background: Hemoglobin-based oxygen carriers (HBOCs) are potential alternatives to red blood cells in transfusions. Clinical trials using early versions of HBOCs noted adverse effects that appeared to result from removal of the vasodilator nitric oxide (NO). Previous reports suggest that size-enlarged HBOCs may avoid NO-rich regions along the vasculature and therefore not cause vasoconstriction and hypertension.
View Article and Find Full Text PDFNitric oxide (NO) is a gas that induces relaxation of smooth muscle cells in the vasculature. Because NO reacts with oxyhaemoglobin with high affinity, the gas is rapidly scavenged by oxyhaemoglobin in red blood cells and the vasodilating effects of inhaled NO are limited to ventilated regions in the lung. NO therefore has the unique ability to induce pulmonary vasodilatation specifically in the portions of the lung with adequate ventilation, thereby improving oxygenation of blood and decreasing intrapulmonary right to left shunting.
View Article and Find Full Text PDFAm J Respir Crit Care Med
November 2018
Rationale: No medical intervention has been identified that decreases acute kidney injury and improves renal outcome at 1 year after cardiac surgery.
Objectives: To determine whether administration of nitric oxide reduces the incidence of postoperative acute kidney injury and improves long-term kidney outcomes after multiple cardiac valve replacement requiring prolonged cardiopulmonary bypass.
Methods: Two hundred and forty-four patients undergoing elective, multiple valve replacement surgery, mostly due to rheumatic fever, were randomized to receive either nitric oxide (treatment) or nitrogen (control).
Serum levels of fibroblast growth factor 23 (FGF23) markedly increase with renal impairment, with FGF23 levels correlating with the presence of left ventricular hypertrophy (LVH) and mortality in patients with chronic kidney disease (CKD). FGF23 activates calcineurin/nuclear factor of activated T cell (NFAT) signaling and induces hypertrophy in murine cardiomyocytes. X-linked hypophosphatemia (XLH) is characterized by high circulating levels of FGF23 but, in contrast to CKD, is associated with hypophosphatemia.
View Article and Find Full Text PDFSickle cell disease is an inherited disorder of hemoglobin (Hb). During a sickle cell crisis, deoxygenated sickle hemoglobin (deoxyHbS) polymerizes to form fibers in red blood cells (RBCs), causing the cells to adopt "sickled" shapes. Using small molecules to increase the affinity of Hb for oxygen is a potential approach to treating sickle cell disease, because oxygenated Hb interferes with the polymerization of deoxyHbS.
View Article and Find Full Text PDFObjectives: To test the safety of a novel miniaturized device that produces nitric oxide (NO) from air by pulsed electrical discharge, and to demonstrate that the generated NO can be used to vasodilate the pulmonary vasculature in rabbits with chemically-induced pulmonary hypertension.
Study Design: A miniature NO (mini-NO) generator was tested for its ability to produce therapeutic levels (20-80 parts per million (ppm)) of NO, while removing potentially toxic gases and metal particles. We studied healthy 6-month-old New Zealand rabbits weighing 3.
The 21st Congress for the International Society for Aerosols in Medicine included, for the first time, a session on Pulmonary Delivery of Therapeutic and Diagnostic Gases. The rationale for such a session within ISAM is that the pulmonary delivery of gaseous drugs in many cases targets the same therapeutic areas as aerosol drug delivery, and is in many scientific and technical aspects similar to aerosol drug delivery. This article serves as a report on the recent ISAM congress session providing a synopsis of each of the presentations.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2017
Purpose: While nitric oxide (NO) donors are emerging as treatments for glaucoma, the mechanism by which NO lowers intraocular pressure (IOP) is unclear. NO activates the enzyme guanylyl cyclase (GC) to produce cyclic guanosine monophosphate. We studied the ocular effects of inhaled and topically applied NO gas in mice and lambs, respectively.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2017
Intravascular hemolysis produces injury in a variety of human diseases including hemoglobinopathies, malaria, and sepsis. The adverse effects of increased plasma hemoglobin are partly mediated by depletion of nitric oxide (NO) and result in vasoconstriction. Circulating plasma proteins haptoglobin and hemopexin scavenge extracellular hemoglobin and cell-free heme, respectively.
View Article and Find Full Text PDFInhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge.
View Article and Find Full Text PDFBackground: Transfusion of packed erythrocytes stored for a long duration is associated with increased pulmonary arterial pressure and vascular resistance. Prolonged storage decreases erythrocyte deformability, and older erythrocytes are rapidly removed from the circulation after transfusion. The authors studied whether treating stored packed ovine erythrocytes with NO before transfusion could prevent pulmonary vasoconstriction, enhance erythrocyte deformability, and prolong erythrocyte survival after transfusion.
View Article and Find Full Text PDFCardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events.
View Article and Find Full Text PDFInhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff.
View Article and Find Full Text PDFAm J Respir Crit Care Med
October 2014
Rationale: Transfusion of erythrocytes stored for prolonged periods is associated with increased mortality. Erythrocytes undergo hemolysis during storage and after transfusion. Plasma hemoglobin scavenges endogenous nitric oxide leading to systemic and pulmonary vasoconstriction.
View Article and Find Full Text PDF