Publications by authors named "Bingke Lv"

Objectives: This study aimed to analyze the difference between cerebral salt-wasting syndrome (CSWS) and syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in patients with hyponatremia after hypothalamic tumor surgery, and to explore a convenient and effective way to identify CSWS and SIADH.

Methods: Patients undergoing craniotomy of hypothalamic tumor admitted to the Department of The Affiliated Hospital of Qingdao University from December 2018 to May 2020 were enrolled in this study. Plasma brain natriuretic peptide (BNP), 24-h urine sodium, 24-h urine volume, and the diameter of the inferior vena cava (IVCD) were measured daily before operation and 1-7 days after operation, to analyze differences in plasma BNP, 24-h urinary sodium excretion, 24-h urine volume, and IVCD between the CSWS and SIADH.

View Article and Find Full Text PDF

To investigate the therapeutic mechanism of action of transplanted stem cells and develop exosome-based nanotherapeutics for ischemic stroke, we assessed the effect of exosomes (Exos) produced by human umbilical cord mesenchymal stem cells (hUMSCs) on microglia-mediated neuroinflammation after ischemic stroke. Our results found that injected hUMSC-Exos were able to access the site of ischemic damage and could be internalized by cells both and . , treatment with hUMSC-Exos attenuated microglia-mediated inflammation after oxygen-glucose deprivation (OGD).

View Article and Find Full Text PDF

Store-operated Ca entry (SOCE) plays an important role in regulating Ca influx, which participates in tumor cell survival and motility. We aim to elucidate the role of SOCE in the behavior of C6 glioma cells. Lentiviral vector inserted with the Orai1-targeting shRNA was used to inhibit SOCE in C6 glioma cells.

View Article and Find Full Text PDF

Purpose: To evaluate various factors that could be associated with the postoperative prognosis of patients with craniopharyngiomas and provide evidence for the proper surgical course and optimal outcome assessments of craniopharyngiomas.

Methods: We performed a retrospective study and reviewed 68 patients with craniopharyngiomas who received surgery from May 2013 to October 2018. The relationships between the disease prognosis and age, gender, onset symptoms, size of tumor, degree of calcification, consistency, QST classification, adhesion strength, and pathological types were analyzed.

View Article and Find Full Text PDF

Background: Osteosarcoma is a common malignant bone tumor that occurs in children or adolescents but rarely in the skull. Epidermoid cysts, also known as cholesteatomas, represent approximately 0.2%-1.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BMSCs) exhibit potential regenerative effects on the injured brain. However, these effects are constrained by their limited ability to migrate to the injured site. Oncostatin M (OSM) has been shown to affect the proliferation and migration of mesenchymal stem cells.

View Article and Find Full Text PDF

Tumor initiating cells or cancer stem cells (CSCs) play an important role in the initiation, development, metastasis, and recurrence of tumors. However, traditional therapies have limited effects against CSCs and targeting these cells is crucial when developing new therapeutic strategies against cancer. One potentially targetable factor is CD47, a member of the immunoglobulin superfamily.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC) transplantation is a promising therapeutic strategy for myocardial infarction. The survival rate of the grafted MSCs is limited by the conditions of hypoxia and low nutrient levels. In this study, we investigated the role of hypoxia-inducible factor 1 alpha (Hif-1α) in oxygen-glucose deprivation (OGD)-induced injury in MSCs.

View Article and Find Full Text PDF

Bone mesenchymal stem cells (BMSCs) death after transplantation is a serious obstacle impacting on the outcome of cell therapy for cerebral infarction. This study was aimed to investigate whether modification of BMSCs with hypoxia-inducible factor 1α (Hif-1α) could enhance the survival of the implanted BMSCs. BMSCs were isolated from Wistar rats, and were infected with Hif-1α-GFP lentiviral vector or Hif-1α siRNA.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are ideal materials for cell therapy. Research has indicated that hypoxia benefits MSC survival, but little is known about the underlying mechanism. This study aims to uncover potential mechanisms involving hypoxia inducible factor 1α (HIF1A) to explain the promoted MSC survival under hypoxia.

View Article and Find Full Text PDF

In this study, we investigated interactions among microglia (MG), bone marrow mesenchymal stem cells (BMSCs) and neurons in cerebral ischemia and the potential mechanisms using an oxygen-glucose deprivation (OGD) model. Rat BMSCs were incubated with conditioned medium (CM) from cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF) on rat neuron viability, apoptosis, lactate dehydrogenase (LDH) leakage and mitochondrial membrane potential (MMP) were analyzed in this model.

View Article and Find Full Text PDF

Astrocytes are critical for ischemic stroke, and understanding their role in mesenchymal stem cell (MSC)-mediated protection against ischemic injury is important. The paracrine capacity of MSCs has been proposed as the principal mechanism contributing to the protection and repair of brain tissue. In the present study, an in vitro oxygen-glucose deprivation (OGD) model was used to mimic ischemic injury.

View Article and Find Full Text PDF

Microglia are the primary immunocompetent cells in brain tissue and microglia-mediated inflammation is associated with the pathogenesis of various neuronal disorders. Recently, many studies have shown that mesenchymal stem cells (MSCs) display a remarkable ability to modulate inflammatory and immune responses through the release of a variety of bioactive molecules, thereby protecting the central nervous system. Previously, we reported that MSCs have the ability to modulate inflammatory responses in a traumatic brain injury model and that the potential mechanisms may be partially attributed to upregulated TNF-α stimulated gene/protein 6 (TSG-6) expression.

View Article and Find Full Text PDF

Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that are characterized by the ability to take up and process antigens and prime T cell responses. Mesenchymal stem cells (MSCs) are multipotent cells that have been shown to have immunomodulatory abilities, including inhibition of DC maturation and function in vivo and in vitro; however, the underlying mechanism is far from clear. In this study we found that MSCs can inhibit the maturation and function of bone marrow-derived DCs by releasing TSG-6.

View Article and Find Full Text PDF

Human amniotic membrane-derived mesenchymal stem cells (AMSCs) are considered a novel and promising source of stem cells for cell replacement-based therapy. Current research is mostly limited to investigating the cellular differentiation potential of AMSCs, while few have focused on their immunosuppressive properties. This study is aimed at exploring and evaluating the immunosuppressive effect of human AMSCs on the viability and migratory properties of microglia.

View Article and Find Full Text PDF

Many studies have shown that microglia in the activated state may be neurotoxic. It has been proven that uncontrolled or over-activated microglia play an important role in many neurodegenerative disorders. Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown in many animal models to have a therapeutic effect on neural damage.

View Article and Find Full Text PDF