Publications by authors named "Bingjun Yan"

In addition to adaptive immune checkpoint of PD-1/PD-L1, the innate immune checkpoint SIRPα/CD47 plays an important role in regulation of tumor immune escape. However, the mechanism of CD47 ubiquitination on tumor immune escape remains unclear. Here it is found that TRAF2 bound to the C-terminal of CD47 cytoplasmic fragment and induced its ubiquitination, leading to inhibition of CD47 autophagic degradation by disrupting its binding to LC3, which in turn inhibited macrophage phagocytosis and promoted tumor immune escape.

View Article and Find Full Text PDF

A high level of PD-L1 in cancer cells promotes tumor immune escape and inhibits tumor immunotherapy. Although PD-L1 gene expression is upregulated by multiple pathways, its gene transcriptional repression is still unclear. Here we found that loss of PPARα, one of the peroxisome-proliferator-activated receptors (PPARs) family members, promoted colorectal tumor immune escape.

View Article and Find Full Text PDF

The adaptive immune checkpoints such as PD-1(programmed death-1)/PD-L1 (programmed death-ligand 1) play an important role in cancer immunotherapy, whereas increasing evidence suggests that cancer cell evades immune surveillance by innate immune checkpoints such as SIRPα (signal-regulatory protein α)/CD47 (cluster of differentiation 47). In multiple types of cancer cells and solid tumor tissues, highly expressed CD47 protein level has been observed, which is triggered by some transcription factors including NFκB, Myc, and HIF. As a transmembrane protein, the binding of CD47 to SIRPα ligand on phagocytes results in phagocytosis resistance and cancer cell immune escape.

View Article and Find Full Text PDF

20-Hydroxy-3-oxolupan-28-oic acid (HOA), a lupane-type triterpene, was obtained from the leaves of , which is described in the Chinese Pharmacopeia as a remedy for inflammation and related diseases. The anti-inflammatory mechanisms of HOA, however, have not yet been fully elucidated. Therefore, the objective of this study was to characterize the molecular mechanisms of HOA in lipopolysaccharide (LPS)-stimulated RAW264.

View Article and Find Full Text PDF