Publications by authors named "Bingjiang Li"

In this study, 2-fluoro-5-iodopyridine (2-F-5-IPy) was used as an electrolyte additive, which can not only protect the negative electrode effectively by forming a stable SEI, but also convert dead lithium into active lithium. Benefits from this are a capacity retention of a Li‖LiFePO cell after 300 cycles from 36.5% to 89.

View Article and Find Full Text PDF

Methyl 1-1,2,4-triazole-3-carboxylate (MTC) was added into lithium metal batteries as an electrolyte additive, and not only did this addition lead to formation of solid electrolyte interfaces to protect both the anode and cathode, but the added MTC also served as a Lewis base in removing HF from the electrolyte to prevent the electrolyte from deteriorating. Therefore, the addition of MTC, in an appropriate amount, can be very effective at improving the electrochemical performance of lithium metal batteries.

View Article and Find Full Text PDF

Highly flexible, binder-free cathodes for lithium ion batteries were fabricated by utilizing N doped carbon to coat VO (VO@N-C) nanobelt arrays growing on carbon cloth. Such a robust architecture endows the electrode with effective ion diffusion and charge transport, resulting in high rate capability (135 mA h g at 10C) and excellent cycling performance (215 mA h g after 50 cycles at 0.5C).

View Article and Find Full Text PDF

Novel hierarchical carbon nanohorns (CNHs) carried iron fluoride nanocomposites have been constructed by direct growth of FeF3·0.33H2O nanoparticles on CNHs. In the FeF3·0.

View Article and Find Full Text PDF

We describe a novel strategy for in situ fabrication of hierarchical Fe3O4 nanoclusters-GAs. Fe3O4 NCs-GAs deliver excellent rate capability (the reversible capacities obtained were 1442, 392 and 118 mA h g(-1) at 0.1C, 12C and 35C rates), and a high reversible capacity of 577 mA h g(-1) over 300 cycles at the current density of 5.

View Article and Find Full Text PDF

A facile and advanced architecture design of FeF3·0.33H2O impregnated CMK-3 nanocomposite (FeF3·0.33H2O@CMK-3) is presented.

View Article and Find Full Text PDF

A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g(-1) at 0.

View Article and Find Full Text PDF