Aims: Obesity, as a worldwide healthcare problem, has become more prevalent. ZFP36 is a well-known RNA-binding protein and involved in the posttranscriptional regulation of many physiological processes. Whether the adipose ZFP36 plays a role in obesity and insulin resistance remains unclear.
View Article and Find Full Text PDFArterial remodeling serves as a pivotal mechanism underlying the development of diseases such as hypertension. Fibulin-7 (FBLN7), an adhesion protein, remains enigmatic regarding its role in these pathological processes. This study aims to explore whether FBLN7 influences vascular remodeling and its underlying mechanisms.
View Article and Find Full Text PDFResveratrol (RES) has been demonstrated to be protective in the cardiovascular system in animal studies, but the evidence is limited in humans. The purpose of the study was to evaluate the effect of RES supplementation on cardiac remodeling in patients with hypertension. Eighty Subjects were randomly divided into RES group (plus RES 400 mg/d in addition to conventional therapy, n = 43) and control group (conventional therapy, n = 37).
View Article and Find Full Text PDFThis study investigated how miR-136-5p partially affected cardiomyocyte pyroptosis in rats with coronary microembolization (CME). The cardiac function and structure of rats with CME were evaluated using echocardiography, hematoxylin and eosin staining, Masson staining, and troponin I level. Pyroptosis was induced by lipopolysaccharide (LPS) in isolated rat cardiomyocytes and evaluated by the expression of caspase-1, NOD-like receptor family pyrin domain-containing 3, interleukin-1β, and gasdermin D-N.
View Article and Find Full Text PDFIn this study, we aim to investigate the regulation of specific long non-coding RNAs (lncRNAs) on the progression of ischemia/reperfusion (I/R) injury. We identified and characterized the exosomes derived from mouse primary aortic endothelial cells. Subsequently, we found that these exosomes expressed typical exosomal markers and high levels of LINC00174, which significantly ameliorated I/R-induced myocardial damage and suppressed the apoptosis, vacuolation, and autophagy of myocardial cells.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2021
Increasing evidence suggests that mitochondrial microRNAs (miRNAs) are implicated in the pathogenesis of cardiovascular diseases; however, their roles in ischemic heart disease remain unclear. Herein, we demonstrate that miR-146a is enriched in the mitochondrial fraction of cardiomyocytes, and its level significantly decreases after ischemic reperfusion (I/R) challenge. Cardiomyocyte-specific knockout of miR-146a aggravated myocardial infarction, apoptosis, and cardiac dysfunction induced by the I/R injury.
View Article and Find Full Text PDFObjective: Coronary microembolization (CME) results in progressive contractile dysfunction associated with cardiomyocyte apoptosis. Alprostadil injection improves microcirculation, which is effective in treating various cardiovascular disorders. However, the therapeutic effects of alprostadil in CME-induced myocardia injury remain unknown.
View Article and Find Full Text PDFMiRNAs can be used as promising diagnostic biomarkers of heart failure, while lncRNAs act as competing endogenous RNAs of miRNAs. In this study, we collected peripheral blood monocytes from subjects with or without HF to explore the association between certain lncRNAs, miRNAs and HF. Heart failure patients with preserved or reduced ejection fraction were recruited for investigation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2020
Increased production of reactive oxygen species (ROS) significantly contributed to the pathogenesis of acute myocardial infarction (AMI). Recent studies suggest that hypoxia upregulated the long noncoding RNA taurine upregulated gene 1 (TUG1). In this study, we explored the functional significance and molecular mechanisms of TUG1/miR-132-3p axis in ischemia-challenged cardiomyocytes.
View Article and Find Full Text PDFMyocardial infarction (MI) is a life-threatening cardiac event that results in extreme damage to the heart muscle. The Wnt signaling pathway has been implicated in the development of heart diseases. Hence, the current study aimed to investigate the role of microRNA (miRNA) in association with the Wnt signaling pathway to identify potential candidates for MI therapy.
View Article and Find Full Text PDFBackground: Long non-coding RNAs (lncRNAs) play a central role in regulating heart diseases. In the present study, we examined the effects of lncRNA taurine up-regulated gene 1 (TUG1) in ischemia/reperfusion (I/R)- or hydrogen peroxide-challenged cardiomyocytes, with specific focus on autophagy-induced cell apoptosis.
Methods: The expressions of miR-142-3p and TUG1 in HO-challenged cardiomyocytes and I/R-injured heart tissue were measured by RT-qPCR.
Coronary microembolization (CME) is a common complication seen during primary percutaneous coronary intervention (pPCI). CME-induced myocardiac inflammation is the primary cause of myocardiac injury. Dysregulated miR-142-3p has been implicated in multiple cardiovascular diseases and is significantly downregulated in CME-induced myocardial injury.
View Article and Find Full Text PDFCoronary microembolization (CME) occurs when atherosclerotic plaque debris is detached during the treatment of acute coronary syndrome with Percutaneous Coronary Intervention (PCI). The complications of distal microvascular embolism, including local myocardial inflammation, are the main causes of myocardial damage and are a strong predictor of poor long-term prognosis and major cardiac adverse events. microRNAs (miRNAs) are involved in the pathophysiological processes of cardiovascular inflammatory diseases.
View Article and Find Full Text PDFCoronary microembolization (CME) is a common complication during the treatment of acute coronary syndrome (ACS) and percutaneous coronary intervention (PCI). Nicorandil can be used to prevent myocardial injury after PCI to reduce the incidence of coronary no-reflow and slow flow, and play a role in myocardial protection, suggesting that its mechanism may be related to the inhibition of CME-induced inflammation of cardiomyocytes. However, the specific mechanism remains unclear.
View Article and Find Full Text PDFOxidized low-density lipoprotein (ox-LDL) is a major risk factor for atherosclerosis and often causes injury to vascular endothelial cells. We found that pinocembrin, a natural antioxidant found in honey and certain herbs, protects human aortic endothelial cells (HAECs) from ox-LDL-induced injury. Pinocembrin suppresses the expression of pro-inflammatory vascular adhesion molecules (VCAM-1, ICAM-1 and E-selectin) and cytokines (TNF-α, IL-1β, and IL-8), as well as ROS production induced by ox-LDL.
View Article and Find Full Text PDF