Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.
View Article and Find Full Text PDFBackground: Emerging evidences suggest that aberrant metabolites contributes to the immunosuppressive microenvironment that leads to cancer immune evasion. Among tumor immunosuppressive cells, myeloid-derived suppressor cells (MDSCs) are pathologically activated and extremely immunosuppressive, which are closely associated with poor clinical outcomes of cancer patients. However, the correlation between MDSCs mediated immunosuppression and particular cancer metabolism remained elusive.
View Article and Find Full Text PDFTertiary lymphoid structures (TLSs) in tumor tissues facilitate immune cell trafficking and cytotoxicity, which benefits survival and favorable responses in immune therapy. Here, we observed a high correlation of tumor necrosis factor superfamily member 14 (LIGHT) expression with TLS signature genes, which are all markers for immune cell accumulation and better prognosis, through retrieving RNA sequencing (RNA-seq) data from patients with cancer, suggesting the potential of LIGHT in reconstituting a high immune-infiltrated tumor microenvironment. Accordingly, LIGHT co-expressed chimeric antigen receptor T (LIGHT CAR-T) cells not only showed enhanced cytotoxicity and cytokine production but also improved CCL19 and CCL21 expression by surrounding cells.
View Article and Find Full Text PDFRecently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies. However, CAR-T cell therapy currently has several limitations. Here we successfully developed a two-in-one approach to generate non-viral, gene-specific targeted CAR-T cells through CRISPR-Cas9.
View Article and Find Full Text PDFCancer Immunol Res
November 2020
P2X7, a crucial sensor of extracellular ATP, is widely distributed in different immune cells as a potent stimulant of inflammation and immunity. P2X7 is also highly expressed in immunosuppressive cells such as tumor-associated macrophages (TAM) and even tumor cells. However, the function and potential applications of P2X7-mediated immunosuppressive responses in the tumor microenvironment remain unclear.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) are one of the prominent components of the tumor microenvironment (TME). The polarization peculiarity of TAMs drives them to infiltrate and active with states between M1 (anti-tumor) and M2 (pro-tumor) phenotypes in cancers. Exploiting small molecular drugs through targeting TAMs to repolarize them into an antitumor phenotype is considered as a novel strategy for cancer treatments in recent years.
View Article and Find Full Text PDFTherapies targeting immune checkpoints have shown great clinical potential in a subset of patients with cancer but may be hampered by a failure to reverse the immunosuppressive tumor microenvironment (TME). As the most abundant immune cells in TME, tumor-associated macrophages (TAM) play nonredundant roles in restricting antitumor immunity. The leucine-rich repeat-containing G-protein-coupled receptor 4 (Lgr4, also known as Gpr48) has been associated with multiple physiologic and pathologic functions.
View Article and Find Full Text PDFVesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear.
View Article and Find Full Text PDFAs the most prominent clinical drug targets for the inhibition of platelet aggregation, P2Y and P2Y have been found to be highly expressed in both platelets and macrophages. However, the roles and function of P2Y in the regulation of macrophage-mediated innate immune responses remain unclear. Here, we demonstrate that adenosine 5'-diphosphate (ADP), the endogenous ligand of P2Y, P2Y and P2Y, was released both in E.
View Article and Find Full Text PDFExtracellular UDP (eUDP), released as a danger signal by stressed or apoptotic cells, plays an important role in a series of physiological processes. Although the mechanism of eUDP release in apoptotic cells has been well defined, how the eUDP is released in innate immune responses remains unknown. In this study, we demonstrated that UDP was released in both Escherichia coli-infected mice and LPS- or Pam3CSK4-treated macrophages.
View Article and Find Full Text PDFExtracellular nucleotides that constitute a "danger signal" play an important role in the regulation of immune responses. However, the function and mechanism of extracellular UDP and P2Y6 in antiviral immunity remain unknown. In this study, we demonstrated the in vitro and in vivo protection of UDP/P2Y6 signaling in vesicular stomatitis virus (VSV) infection.
View Article and Find Full Text PDFExtracellular ATP (eATP), released as a "danger signal" by injured or stressed cells, plays an important role in the regulation of immune responses, but the relationship between ATP release and innate immune responses is still uncertain. In this study, we demonstrated that ATP was released through Toll-like receptor (TLR)-associated signaling in both Escherichia coli-infected mice and lipopolysaccharide (LPS)- or Pam3CSK4-treated macrophages. This ATP release could be blocked completely only by N-ethylmaleimide (NEM), not by carbenoxolone (CBX), flufenamic acid (FFA), or probenecid, suggesting the key role of exocytosis in this process.
View Article and Find Full Text PDFThe recognition of pathogen-associated molecular patterns by Toll-like receptors (TLRs) is pivotal in both innate and adaptive immune responses. Here we demonstrate that deletion of Lgr4/Gpr48 (G-protein-coupled receptor 48), a seven-transmembrane glycoprotein hormone receptor, potentiates TLR2/4-associated cytokine production and attenuates mouse resistance to septic shock. The expression of CD14, a co-receptor for TLR2/4-associated pathogen-associated molecular patterns, is increased significantly in Lgr4-deficient macrophages, which is consistent with the increased immune response, whereas the binding activity of cAMP-response element-binding protein is decreased significantly in Lgr4-deficient macrophages, which up-regulate the expression of CD14 at the transcriptional level.
View Article and Find Full Text PDFNorcantharidin (NCTD), a demethylated analog of cantharidin, is a common used clinical drug to inhibit proliferation and metastasis of cancer cells. But the role of NCTD in modulating immune responses remains unknown. Here, we investigated the function and mechanism of NCTD in regulation of TLR4 associated immune response in macrophages.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
June 2002
A new spectral distribution data file is set up by handling Arai's experimental data of spectral distribution, through the procession of interpolation and fitting. The distance of wavelength is 0.002 nm.
View Article and Find Full Text PDF