Publications by authors named "Binghai Dong"

The antireflective transmittance-enhancing films have important applications in solar cells and other applications due to their self-cleaning and high light transmittance. However, obtaining high transmittance, highly durable, and superhydrophobic surfaces in a simple and easily accessible way is still a challenge. A simple evaporative coating technique has been proposed that can be used to prepare antireflective superhydrophobic aluminum oxide films using 1,1,2,2-perfluoroalkyltriethoxysilanes.

View Article and Find Full Text PDF

In order to elucidate the diffusion behaviour of ions in alumina during the anodic alumina process, the effects of electric field strength, hydration content, and electrolyte on amorphous alumina and hydrated alumina were studied using ab initio molecular dynamics. The results show that the diffusion rate of ions in alumina increases with the increase in electric field strength, but there is an extreme value. The maximum diffusion rate of Al ions in alumina monohydrate is 21.

View Article and Find Full Text PDF

First-principles computations were utilized to examine the impact of H atoms on the surface behavior of O atoms on the (111) surface of Al and their infiltration behavior into the Al crystal, with the aim of elucidating the behavior of ions in the anodic process during aluminum oxidation. According to the findings, the "abstract" action of H atoms significantly lowers the energy barrier preventing O from entering the Al crystal. The addition of a H atom influences the diffusion of O atoms in the Al crystal as well, and this can lower the activation energy of O atom migration between the tetrahedral interstitial locations from 1.

View Article and Find Full Text PDF

Selenium (Se), the world's oldest optoelectronic material, has been widely applied in various optoelectronic devices such as commercial X-ray flat-panel detectors and photovoltaics. However, despite the rare and widely-dispersed nature of Se element, a sustainable recycling of Se and other valuable materials from spent Se-based devices has not been developed so far. Here a sustainable strategy is reported that makes use of the significantly higher vapor pressure of volatile Se compared to other functional layers to recycle all of them from end-of-life Se-based devices through a closed-space evaporation process, utilizing Se photovoltaic devices as a case study.

View Article and Find Full Text PDF

Applying antibacterial polymers and pro-regenerative small molecules are two individual strategies for accelerating wound healing. However, integrating those two unique approaches into one therapeutic platform that meets clinical requirements is still a challenge. Herein, a series of antibacterial gelatin methacrylate (GelMA)/ε-polylysine (ε-PL) composite hydrogels (termed as GP-n HGs, n = 0, 10, 20, and 30, respectively) are innovatively fabricated by ultraviolet light (UV) crosslinking.

View Article and Find Full Text PDF

SnO films as a promising electron transport layer (ETL) have been widely used in planar-type perovskite solar cells to achieve an impressive improvement in the conversion efficiency. However, compared with a mesoporous ETL, the interfacial charge carrier transfer of the SnO ETL is severely limited due to the issues of oxygen vacancy defects and crystal lattice mismatch between SnO and the perovskite, which generally leads to the growth of randomly stacked and porous perovskite layers and subsequently impacts the charge transport and transfer properties. In this work, we developed a facile approach by inducing a bifunctional molecule, β-alanine, into the SnO ETL, which can serve as a bridge to modulate the interfacial charge transfer and the perovskite crystallization kinetics.

View Article and Find Full Text PDF

To obtain new highly efficient and stable quasi-solid dye-sensitized solar cells (QS-DSSCs) that can meet the requirements for the large-scale commercial application of solar cells, we have developed a novel quasi-solid-state electrolyte, based on an electrospun polyvinylidene fluoride (PVDF) membrane. The structure and properties of electrospun PVDF membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), thermogravimetric (TG), and mechanical testing. The results indicate that the electrospun PVDF membrane has a three-dimensional network structure with extremely high porosity, which not only acts as a barrier to prevent electrolyte leakage but also provides a channel for the transmission of ions in the electrolyte, thereby effectively guaranteeing the high photoelectric conversion efficiency of the cells.

View Article and Find Full Text PDF

Extending the spectral absorption of organic-inorganic mixed-cation perovskite solar cells (PSCs) from visible light to the near-infrared (NIR) range minimizes the nonabsorption loss of solar photons. Few studies have focused on the application of high-fluorescence NaYbF4:Ho3+ upconversion nanoparticles (UCNPs) in solar cells. In this study, NaYbF4:Ho3+ UCNPs were successfully prepared using a solvothermal method.

View Article and Find Full Text PDF

The perovskite layer is a crucial component influencing high-performance perovskite solar cells (PSCs). In the one-step solution method, anti-solvents are important for obtaining smooth and uniform perovskite active layers. This work explored the effect of various anti-solvents on the preparation of triple cation perovskite active layers.

View Article and Find Full Text PDF

Highly transparent, energy-saving, and superhydrophobic nanostructured SiO/VO composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO layer and a top protective layer that consists of SiO nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO layer.

View Article and Find Full Text PDF

ABX-type organic lead halide perovskites have gained increasing attention as light harvester for solar cells due to their high power conversion efficiency (PCE). Recently, it has become a trend to avoid the use of expensive hole-transport materials (HTMs) and precious metals, such as Au, to be competitive in future commercial development. In this study, we fabricated mixed-cation perovskite-based solar cells through one-step spin-coating using methylammonium (CHNH) and formamidinium (HN=CHNH) cations to extend the optical absorption range into the red region and enhance the utilization of solar light.

View Article and Find Full Text PDF

In this study we design and construct high-efficiency, low-cost, highly stable, hole-conductor-free, solid-state perovskite solar cells, with TiO2 as the electron transport layer (ETL) and carbon as the hole collection layer, in ambient air. First, uniform, pinhole-free TiO2 films of various thicknesses were deposited on fluorine-doped tin oxide (FTO) electrodes by atomic layer deposition (ALD) technology. Based on these TiO2 films, a series of hole-conductor-free perovskite solar cells (PSCs) with carbon as the counter electrode were fabricated in ambient air, and the effect of thickness of TiO2 compact film on the device performance was investigated in detail.

View Article and Find Full Text PDF

A novel TiO(2) double-layer (DL) film consisting of TiO(2) hollow spheres (HSs) as overlayer and single-crystalline TiO(2) nanorod arrays (RAs) as underlayer was designed as the photoanode of dye-sensitized solar cells (DSSCs). This new-typed TiO(2) HS/RA DL film could significantly improve the efficiency of DSSCs owing to its synergic effects, i.e.

View Article and Find Full Text PDF