Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel.
View Article and Find Full Text PDFBenzene and its aromatic derivatives are typical volatile organic compounds for indoor and outdoor air pollution, harmful to human health and the environment. It has been considered extremely difficult to break down benzene rings at ambient conditions without external energy input, due to the extraordinary stability of the aromatic structure. Here, we show one such solution that can thoroughly degrade benzene to basically water and carbon dioxide at 25 °C in air using atomically dispersed Fe in N-doped porous carbon, with almost 100% benzene conversion.
View Article and Find Full Text PDFObjectives: To study the effect of glucose metabolism disorders on the short-term prognosis in neonates with asphyxia.
Methods: A retrospective analysis was performed on the medical data of the neonates with asphyxia who were admitted to 52 hospitals in Hubei Province of China from January to December, 2018 and had blood glucose data within 12 hours after birth. Their blood glucose data at 1, 2, 6, and 12 hours after birth (with an allowable time error of 0.