A highly sensitive sulfur dioxide (SO) photoacoustic gas sensor was developed for the sulfur hexafluoride (SF) decomposition detection in electric power systems by using a novel 266 nm low-cost high-power solid-state pulse laser and a high -factor differential photoacoustic cell. The ultraviolet (UV) pulse laser is based on a passive -switching technology with a high output power of 28 mW. The photoacoustic signal was normalized to the laser power to solve the fluctuation of the photoacoustic signal due to the power instability of the UV laser.
View Article and Find Full Text PDF: Gastric cancer (GC) is the leading cause of cancer-related deaths worldwide. C118P, a microtubule inhibitor with anti-angiogenic and vascular-disrupting activities, was proven to be cytotoxic to various cancer cell lines. This study aimed to explore the anti-tumor effect of C118P against gastric cancer and identify its potential target.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases.
View Article and Find Full Text PDFPsoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure.
View Article and Find Full Text PDFInterleukin-1 (IL-1) is a pivotal mediator in the pathological progression of osteoarthritis (OA), playing a central role in disease progression. However, the rapid clearance of IL-1 receptor antagonist (IL-1Ra) from the joints may hinder the efficacy of intra-articular IL-1Ra injections in reducing OA-associated pain or cartilage degradation. Sustaining sufficient levels of IL-1Ra within the joints via adeno-associated virus (AAV)-mediated gene therapy presents a promising therapeutic strategy for OA.
View Article and Find Full Text PDFA series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.
View Article and Find Full Text PDFNatural plant fibers (NPFs) have emerged as a sustainable alternative in the manufacture of composites due to their renewability and low environmental impact. This has led to a significant increase in the use of natural plant fiber-reinforced polymers (NPFRPs) in a variety of industries. The diversity of NPF types brings a wide range of properties and functionalities to NPFRPs, which in turn highlights the urgent need to improve the properties of fiber materials in order to enhance their performance and suitability.
View Article and Find Full Text PDFLignin, the most abundant natural aromatic polymer, holds considerable promise for applications in various industries. The primary obstacle to the valorization of lignin into useful materials is its low molecular weight and diminished chemical reactivity, attributable to its intricate structure. This study aimed to treat lignocellulosic biomass using a switchable solvent (DBU-HexOH/HO) derived from the non-nucleophilic superbase 1,8-diazabicyclo [5.
View Article and Find Full Text PDFCross-linked polyethylene (XLPE) is applied in most advanced high-voltage direct-current (HVDC) power cable insulations, which are produced via dicumyl peroxide (DCP) technology. The electrical conductivity of insulation material can be increased by cross-linking byproducts from the DCP process. Hence, currently much attention is being paid to a new process to produce cross-linking byproduct-free XLPE.
View Article and Find Full Text PDFGiven the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated.
View Article and Find Full Text PDFArtificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively.
View Article and Find Full Text PDFImproving the physical, mechanical, and creep properties of wood fiber-reinforced polymer composites is crucial for broadening their application prospect. In this research, seven types of high-density polyethylene (HDPE) composites reinforced with different mass ratios of Masson pine ( Lamb.) and Chinese fir [ (Lamb.
View Article and Find Full Text PDFAs is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.
View Article and Find Full Text PDFThis paper addresses the issue of the high-precision control of substrate tension in an accumulator during the roll-to-roll coating process. First, a coupling model for tension errors in the substrate within the accumulator is established, along with dynamic models for the input-output rollers, carriage, and the thrust model of the ball screw. Based on these models, a simulation model is built in MATLAB/Simulink to analyze the main causes of substrate tension errors in the accumulator under uncontrolled conditions.
View Article and Find Full Text PDFSelf-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the molecular structure of conventional polyimides. The incorporation of cystamine enabled the films to maintain high transmittance (>87%) and tensile strength (>99 MPa).
View Article and Find Full Text PDFL., (pitaya) is an important tropical fruit crop, and faces significant challenges from soil salinity and heavy metal toxicity. This study explores the role of melatonin (M) in enhancing stress tolerance in pitaya against salinity (S) and copper (Cu) toxicity, both individually and in combination (SCu).
View Article and Find Full Text PDFSalt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.
View Article and Find Full Text PDFExcessive copper (Cu) has become a common physiological disorder restricting the sustainable production of citrus. Coumarin (COU) is a hydroxycinnamic acid that can protect plants from heavy metal toxicity. No data to date are available on the ameliorative effect of COU on plant Cu toxicity.
View Article and Find Full Text PDFRice sheath blight (RSB), caused by the pathogenic fungus , poses a significant threat to global food security. The defense mechanisms employed by rice against RSB are not well understood. In our study, we analyzed the interactions between rice and by comparing the phenotypic changes, ROS content, and metabolite variations in both tolerant and susceptible rice varieties during the early stages of fungal infection.
View Article and Find Full Text PDFRoses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody plants. However, lower somatic embryogenesis (SE) induction rates and genotypic constraints impede progress in genetic transformation in rose.
View Article and Find Full Text PDFMedicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including (Chloranthaceae), (Vitaceae), (Fabaceae), (Cucurbitaceae), (Polygonaceae), (Caryophyllaceae), (Rubiaceae), (Lamiaceae), and (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.
View Article and Find Full Text PDFExtracellular vesicles (EVs) produced by f. sp. () play vital roles in plant-pathogen interactions; however, the isolation of purified TR4-EVs and their pathogenicity and proteomic profiles are not well studied.
View Article and Find Full Text PDF(Orchidaceae) boasts high ornamental value due to its pleasant aroma, foxtail spike, and elegant floral morphology. Inducing to become tetraploid enhances horticultural traits and facilitates fertile intergeneric hybrids through crosses with other market-available tetraploid species. The experimental design involved the application of colchicine at varying concentrations-0.
View Article and Find Full Text PDFThere are discrepancies that exist in the effects of different land uses on soil organic carbon (SOC) and soil microbial carbon metabolism functions. However, the impact of land-use type changes on soil microbial carbon metabolism in alpine grassland arid areas is not well understood, hindering our understanding of the carbon cycling processes in these ecosystems. Therefore, we chose three types of land use (continuous reclamation of grassland (RG), abandoned grassland (AG), and natural grazing grassland (GG)) to study the microbial carbon metabolism and its driving factors by the Biolog-ECO method.
View Article and Find Full Text PDFIrrigation practice, tillage method, and nitrogen (N) management are the three most important agronomic measures for wheat ( L.) production, but the combined effects on grain yield and wheat physiological characteristics are still poorly understood. We conducted a three-year split-split field experiment at the junction of the Loess Plateau and Huang-Huai-Hai Plain in China.
View Article and Find Full Text PDF