Publications by authors named "Bingdi Chen"

Background: Colorectal cancer (CRC) is a leading cause of cancer mortality globally, underscoring the urgency for a noninvasive and effective biomarker to enhance patient prognosis. Circulating tumor cells (CTCs), a potential marker for real-time tumor monitoring, are limited in clinical utility due to the low sensitivity of existing detection methods. Previously, we introduced a novel nano-based CTCs detection method that relies on the electrical properties of cell surfaces, thus eliminating the need for specific molecular biomarkers.

View Article and Find Full Text PDF

Member of the V-type ATPase family have attracted vast attention in tumor progression. Nevertheless, the specific member of V-ATPase, ATP6V1C2, its regulatory function in colorectal cancer (CRC) progression was poorly understood. In this study, comprehensive analyses demonstrated the role of ATP6V1C2 in CRC progression and drug screening based on ATP6V1C2 was carried out.

View Article and Find Full Text PDF

With high incidence of hepatocarcinoma and limited effective treatments, most patients suffer in pain. Antitumor drugs are single-targeted, toxicity, causing adverse side effects and resistance. Dihydroartemisinin (DHA) inhibits tumor through multiple mechanisms effectively.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, characterized by high mortality rate. In clinical practice, several makers of liver cancer, such as VEGFR1, FGFR1 and PDGFRα, were identified and their potentials as a therapeutic target were explored. However, the unsatisfied treatment results emphasized the needs of new therapeutic targets.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying tiny materials called nanomaterials to help with finding and treating cancer better than before.
  • They created a special type of nanomaterial using something called lycorine hydrochloride and magnetic iron oxide to target colorectal cancer cells specifically.
  • The research showed that this new nanomaterial worked really well at finding tumors and treating them without harming healthy cells, making it a promising option for cancer therapy.
View Article and Find Full Text PDF

Purpose: Cancer vaccine (CV) has thrived as a promising tool for cancer prevention and treatment. However, how to maintain the integrity and diversity of individualized vaccine antigens and activate the adaptive immune system is still challenging.

Methods: Herein, a preventive and therapeutic vaccine platform for in situ effective multi-model synergistic therapy is developed.

View Article and Find Full Text PDF

Sarcopenia and osteoporosis, two degenerative diseases in older patients, have become severe health problems in aging societies. Muscles and bones, the most important components of the motor system, are derived from mesodermal and ectodermal mesenchymal stem cells. The adjacent anatomical relationship between them provides the basic conditions for mechanical and chemical signals, which may contribute to the co-occurrence of sarcopenia and osteoporosis.

View Article and Find Full Text PDF

Background: Immune responses and osteogenesis differentiation induced by implants are crucial for bone tissue regeneration. Consideration of only one of those properties is not sufficient. To investigate the synergistic actions, we designed alginate/graphene oxide/sericin/nanohydroxyapatite (Alg/GO/Ser/nHAP) nanocomposite hydrogels with both osteoimmunomodulatory and osteoinductive activities.

View Article and Find Full Text PDF

Introduction: In recent years, numerous studies have confirmed that chronic stress is closely related to the development of cancer. Our previous research showed that high levels of stress hormones secreted in the body during chronic stress could inhibit the cancer-killing activity of granulocytes, which could further promote the development of cancer. Therefore, reversing the immunosuppressive effect of stress hormones on granulocytes is an urgent problem in clinical cancer treatment.

View Article and Find Full Text PDF

Zwitterionic materials are widely applied in the biomedical field due to their excellent antimicrobial, non-cytotoxicity, and antifouling properties but have never been applied in bone tissue engineering. In this study, we synthesized a novel zwitterionic hydrogel incorporated with graphene oxide (GO) using maleic anhydride (MA) as a cross-linking agent by grafted L-cysteine (L-Cys) as the zwitterionic material on maleilated chitosan via click chemistry. The composition and each reaction procedure of the novel zwitterionic hydrogel were characterized via X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FT-IR), while the morphology was imaged by scanning electron microscope (SEM).

View Article and Find Full Text PDF

The electrical characteristic of cancer cells is neglected among tumor biomarkers. The development of nanoprobes with opposing charges for monitoring the unique electrophysiological characteristics of cancer cells. Micro-nano size adsorption binding necessitates consideration of the nanoprobe's specific surface area.

View Article and Find Full Text PDF

Neutrophils, the most abundant white blood cells in the human body, are important immune cells responsible for the innate immune response. Neutrophils can migrate to inflammatory areas, such as tumor sites and infection sites, because of chemotaxis. Neutrophil-based nanomaterials, such as neutrophil-nanomaterial composites and neutrophil membrane-based nanomaterials, can help the drug or imaging agent gather in the inflammatory area with the help of chemotaxis.

View Article and Find Full Text PDF

Tumor cells were reported to have perpetual negative surface charges due to elevated glycolysis, and multifunctional nanoprobes (FeO@SiO mNPs) could attach onto tumor cells opposite surface charges. We thus evaluated whether mixing mNPs with urine could improve the sensitivity of urine cytology test (UCT). We developed a novel UCT method by mixing urine with mNPs (Nano-cytology) to harvest more tumor cells during UCT procedures.

View Article and Find Full Text PDF

Novel functions and involvement of circFARSA have not been reported in pancreatic cancer; in addition, its inhibitor screening has not yet been conducted. The purpose of this study was to (1) verify circFARSA as a novel anti-cancer target for pancreatic cancer and (2) to prepare a novel anti-pancreatic cancer agent targeting circFARSA. In this study, we designed and synthesized a small interfering RNA (siRNA, named siRNA-circFARSA), which specifically inhibits circFARSA expression.

View Article and Find Full Text PDF

At present, various fluorescent nanomaterials have been designed and synthesized as optical contrast agents for surgical navigation. However, there have been no reports on the preparation of fluorescent contrast agents for lung cancer surgery navigation using silicon quantum dots (Si QDs). This study improved and modified the water-dispersible Si QD micelles reported by Pi et al.

View Article and Find Full Text PDF

Nanoparticle-mediated photothermal therapy (PTT) has shown promising capability for tumor therapy through the high local temperature at the tumor site generated by a photothermal agent (PTA) under visible or near-infrared (NIR) irradiation. Improving the accumulation of PTA at the tumor site is crucial to achieving effective photothermal treatment. Here, we developed temperature-activatable engineered neutrophils (Ne) by combining indocyanine green (ICG)-loaded magnetic silica NIR-sensitive nanoparticles (NSNP), which provide the potential for dual-targeted photothermal therapy.

View Article and Find Full Text PDF

Wearable non-invasive glucose sensors that can provide human a painless and portable means to monitor their blood glucose and manage their health condition draw great attentions, recently. Non-invasive human glucose sensors by detecting glucose in interstitial fluid (ISF) extracted through a reverse iontophoresis (RI) approach have been widely investigated, but the current challenges are their complex structure and instability for continuous monitor. Herein, we demonstrate a simple two-electrode non-invasive blood glucose sensor, which is fabricated by using graphene/carbon nanotubes/glucose oxidase composite textile and graphene/carbon nanotube/silver/silver chloride composite textile as the working electrode and counter electrode, respectively.

View Article and Find Full Text PDF

Atherosclerosis can lead to most cardiovascular diseases. Although some biomimetic nanomaterials coated by macrophage membranes have been reported in previous studies of atherosclerosis, to our knowledge, no studies regarding the detection of early lesions of atherosclerosis (foam cells) using such a strategy have yet been reported. In the present study, FeO biomimetic nanoparticles coated with a macrophage membrane (FeO@M) were prepared to investigate the imaging effect on the early lesions of atherosclerosis (foam cells).

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a crucial role in cancer formation and development, especially cancer metastasis. However, lack of a precise tool, which could accurately distinguish specific types of ROS, restricts an in-depth study of ROS in cancer development and progression. Herein, we designed smart and versatile fluorescent Ag nanoclusters (AgNCs) for sensitive and selective detection of different species of ROS in cells and tissues.

View Article and Find Full Text PDF

Modulating the surface properties of nanoparticles (NPs) is an important approach to accomplish immune escape, prolonged the blood retention time, and enhance the ability of targeted drug delivery. The camouflage of cancer cell membrane onto nanoparticles has been proved to be an ideal approach to enhance active targeting ability of NPs. Herein, we isolated the membrane of melanoma cells to coat doxorubicin (DOX) and indocyanine green (ICG)-loaded hollow copper sulfide NPs (ID-HCuSNP@B16F10) for targeted photothermal therapy, photoacoustic imaging, and chemotherapy.

View Article and Find Full Text PDF

Targeted drug delivery by nanoparticles (NPs) is an essential technique to achieve the ideal therapeutic effect for cancer. However, it requires large amounts of work to imitate the biomarkers on the surface of the cell membrane and cannot fully retain the bio-function and interactions among cells. Cell membranes have been studied to form biomimetic NPs to achieve functions like immune escape, targeted drug delivery, and immune modulation, which inherit the ability to interact with the in vivo environments.

View Article and Find Full Text PDF

Psychological stress may be linked to cancer incidence; however, more direct evidence is required to support this viewpoint. In this study, we investigated the effects of stress on immunosurveillance against cancer cells using a previously established examination stress model. We showed that the cancer killing activity (CKA) of granulocytes (also known as polymorphic nuclear cells, PMNs) is sharply reduced during examination stress stimulation in some donors who are psychologically sensitive to examination stress, with the concentration of plasma stress hormones (cortisone, epinephrine, and norepinephrine) increasing accordingly.

View Article and Find Full Text PDF

Introduction: Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools.

Materials And Methods: In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd-Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC.

View Article and Find Full Text PDF

Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand.

View Article and Find Full Text PDF