Rationale: The cornea is a unique structure that maintains its clarity by remaining avascular. Corneal injuries can lead to neovascularisation (CNV) and fibrosis and are the third most common cause of blindness worldwide.
Objective: Corneal injuries induce an immune cell infiltration to initiate reparative processes.
The prevalence of calcific aortic valve disease (CAVD) remains substantial while there is currently no medical therapy available. Forkhead box O1 (FOXO1) is known to be involved in the pathogenesis of cardiovascular diseases, including vascular calcification and atherosclerosis; however, its specific role in calcific aortic valve disease remains to be elucidated. In this study, we identified FOXO1 significantly down-regulated in the aortic valve interstitial cells (VICs) of calcified aortic valves by investigating clinical specimens and GEO database analysis.
View Article and Find Full Text PDFGenetic diseases can be caused by monogenic diseases, which result from a single gene mutation in the DNA sequence. Many innovative approaches have been developed to cure monogenic genetic diseases, namely by genome editing. A specific type of genomic editing, prime editing, has the potential advantage to edit the human genome without requiring double-strand breaks or donor DNA templates for editing.
View Article and Find Full Text PDFBackground: Outcomes in heart transplantation are affected by a variety of variables and patient factors. However, the impact of circadian rhythms, gene expression, and transcription remain underexplored. We thus evaluated the potential role of donor heart cross-clamp times on short-term and long-term outcomes after heart transplantation.
View Article and Find Full Text PDFBackground: In the context of the population growing and aging worldwide, the incidence of non-rheumatic valvular heart disease increased rapidly. This study aimed to describe the burden of non-rheumatic valvular heart disease, providing an up-to-date and comprehensive analysis on the global and regional levels and time trends from 1900 to 2019.
Methods: The Global Burden of Disease 2019 was used to obtain data for this analysis.
Aims: Circadian clocks play important role in immunoregulation. We aimed to investigate cardiac circadian clock specific pathways and compare cardiac grafts procured at different timing on survival after transplantation to explore novel criteria for donor selection.
Methods And Results: In primate heart, phase set enrichment analysis (PSEA) showed rhythmic transcripts were enriched in antigen processing and presentation during activation of circadian rhythm.
Calcific aortic valve disease (CAVD) is a leading cause of cardiovascular mortality and morbidity with increasing prevalence and incidence. The pathobiology of CAVD involves valvular fibrocalcification, and osteogenic and fibrogenic activities are elevated in aortic valve interstitial cells (VICs) from diseased valves. It has been demonstrated that activated NF-κB pathway was present in the early stage of CAVD process.
View Article and Find Full Text PDFBackground: Calcific aortic valve disease (CAVD) is a progressive fibrocalcific disease that can be treated only through valve replacement. This study aimed to determine the role of hub genes and immune cell infiltration in CAVD progression.
Methods: In this study, bioinformatics analysis was used to identify hub genes involved in CAVD.
Rationale: While reactive oxygen species (ROS) has been recognized as one of the main causes of cardiac injury following myocardial infarction, the clinical application of antioxidants has shown limited effects on protecting hearts against ischemia-reperfusion (I/R) injury. Thus, the precise role of ROS following cardiac injury remains to be fully elucidated.
Objective: We investigated the role of mitsugumin 53 (MG53) in regulating necroptosis following I/R injury to the hearts and the involvement of ROS in MG53-mediated cardioprotection.
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinase known to play essential roles in the nervous tissue. Myocardial upregulation of UCHL1 was observed in human dilated cardiomyopathy and several animal models of heart disease, but the (patho)physiological significance of UCHL1 in cardiomyocytes remains undefined. Hence, we conducted this study to fill this critical gap.
View Article and Find Full Text PDFUbiquitin carboxyl-terminal esterase L1 (UCHL1) has been thought to be a neuron specific protein and shown to play critical roles in Parkinson's Disease and stroke via de-ubiquiting and stabilizing key pathological proteins, such as α-synuclein. In the present study, we found that UCHL1 was significantly increased in both mouse and human cardiomyocytes following myocardial infarction (MI). When LDN-57444, a pharmacological inhibitor of UCHL1, was used to treat mice subjected to MI surgery, we found that administration of LDN-57444 compromised cardiac function when compared with vehicle treated hearts, suggesting a potential protective role of UCHL1 in response to MI.
View Article and Find Full Text PDFChemical corneal injuries carry a high morbidity and commonly lead to visual impairment. Here, we investigate the role of Serp-1, a serine protease inhibitor, in corneal wound healing. An alkaline-induced corneal injury was induced in 14 mice.
View Article and Find Full Text PDFIntroduction: The current study was designed to test the potential role of recombinant human MG53 (rhMG53) protein on protecting against alkaline-induced corneal injury in mice.
Materials And Methods: A round filter paper with 2-mm diameter was soaked in 1 mol/L of NaOH solution. The mouse alkaline injury was generated by placing the filter paper directly on the cornea for 30 seconds and washed with 30-mL saline; 10 µL of rhMG53 solution (20 µg/mL) or saline control was topically administrated on the mouse corneas (twice per day for 10 days).
Objective: Cavin3 is a putative tumor suppressor protein. However, its molecular action on tumor regulation is largely unknown. The aim of the current study is to explore the implication of cavin3 alteration, its clinical significance, and any potential molecular mechanisms in the regulation of breast cancer (BC).
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) have become an essential research platform to study different human diseases once being discovered by Dr. Shinya Yamanaka in 2006. Another breakthrough in biomedical research is the application of CRISPR/Cas9 system for genome editing in mammalian cells.
View Article and Find Full Text PDFCorneal wounds usually heal quickly; but diabetic patients have more fragile corneas and experience delayed and painful healing. In the present study, we compared the healing capacity of corneal epithelial cells (CECs) between normal and diabetic conditions and the potential mechanisms. Primary murine CEC derived from wild-type and diabetic (db/db) mice, as well as primary human CEC were prepared.
View Article and Find Full Text PDFThe cornea plays an important role in transmitting light and providing protection to the eye, but is susceptible to injury and infection. Standard treatments for corneal wounds include topical lubricants, antibiotics, bandage contact lens, and surgery. However, these measures are often ineffective.
View Article and Find Full Text PDFBackground: Myocardial viability assessment is typically performed in patients with coronary artery disease (CAD) and severe left ventricular (LV) dysfunction to identify those who might benefit from revascularization and assist in decision making process. However, the prognostic value of myocardial viability testing remains a debating issue.
Methods: Positron Emission Tomography using F-fluorodeoxyglucose (FDG-PET) was performed in 81 patients with ischemic LV dysfunction [ejection fraction (EF) ≤35%] for myocardial viability assessment prior to coronary artery bypass surgery.