Angew Chem Int Ed Engl
October 2024
The glycosylation of peptides and proteins can significantly impact their intrinsic properties, such as conformation, stability, antigenicity, and immunogenicity. Current methods for preparing N-linked glycopeptides typically rely on amide bond formation, which can be limited by the presence of reactive functional groups like acids and amines. Late-stage functionalization of peptides offers a promising approach to obtaining N-linked glycopeptides.
View Article and Find Full Text PDFHerpes simplex virus-1 (HSV-1) utilizes multiple viral surface glycoproteins to trigger virus entry and fusion. Among these glycoproteins, glycoprotein D (gD) functions as a receptor-binding protein, which makes it an attractive target for the development of vaccines against HSV-1 infection. Several recombinant gD subunit vaccines have been investigated in both preclinical and clinical phases with varying degrees of success.
View Article and Find Full Text PDFNative chemical ligation (NCL) provides a powerful solution to assemble proteins with precise chemical features, which enables a detailed investigation of the protein structure-function relationship. As an extension to NCL, the discovery of desulfurization and expressed protein ligation (EPL) techniques has greatly expanded the efficient access to large or challenging protein sequences via chemical ligations. Despite its superior reliability, the NCL-desulfurization protocol requires orthogonal protection strategies to allow selective desulfurization in the presence of native Cys, which is crucial to its synthetic application.
View Article and Find Full Text PDFC-Glycosyl peptides/proteins are metabolically stable mimics of the native glycopeptides/proteins bearing O/N-glycosidic linkages, and are thus of great therapeutical potential. Herein, we disclose a protocol for the syntheses of vinyl C-glycosyl amino acids and peptides, employing a nickel-catalyzed reductive hydroglycosylation reaction of alkyne derivatives of amino acids and peptides with common glycosyl bromides. It accommodates a wide scope of the coupling partners, including complex oligosaccharide and peptide substrates.
View Article and Find Full Text PDFSaikosaponin A (SSa) and D (SSd) are typical oleanane-type saponins featuring a unique 13,28-epoxy-ether moiety at D ring of the aglycones, which exhibit a wide range of biological and pharmacological activities. Herein, we report the first synthesis of saikosaponin A/D (-) and their natural congeners, including prosaikosaponin F (), G (), saikosaponin Y (), prosaikogenin (), and clinoposaponin I (). The present synthesis features ready preparation of the aglycones of high oxidation state from oleanolic acid, regioselective glycosylation to construct the β-(1→3)-linked disaccharide fragment, and efficient gold(I)-catalyzed glycosylation to install the glycans on to the aglycones.
View Article and Find Full Text PDFPentacyclic triterpenoids (PTs) constitute one of the biggest families of natural products, many with higher oxidation state at the D/E rings possess a wide spectrum of biological activties but are poorly accessible. Here we report a site-selective C-H hydroxylation at the D/E rings of PTs paving a way toward these important natural products. We find that Schönecker and Baran's Cu-mediated aerobic oxidation can be applied and become site-selective on PT skeletons, as being effected unexpectedly by the chirality of the transient pyridine-imino directing groups.
View Article and Find Full Text PDF