Publications by authors named "Bingbing Nie"

Objective: Understanding pedestrians' pre-crash avoidance kinematics is crucial for improving the identification of potential collision areas in interactions with highly automated vehicles (HAVs). Age significantly influences pedestrian avoidance velocity and the subsequent crash risks. However, current active safety systems in HAVs often overlook the influence of pedestrians' avoidance velocity and age on imminent accidents.

View Article and Find Full Text PDF

Intelligent safety systems (ISS) for autonomous vehicles, integrating advanced perception capabilities and passive protection devices, are expected to reshape traditional pedestrian safety systems and play a key role in reducing the risk of pedestrian injuries in traffic accidents. However, traditional active control and passive protection modules remain disconnected due to insufficient evidence supporting the effectiveness of collaborative strategies in integrated systems, particularly concerning activation criteria and timing. This study aims to address this gap by developing a comprehensive ISS that incorporates advanced perception systems, a vehicle dynamic control module, and controllable passive safety devices.

View Article and Find Full Text PDF

For highly autonomous vehicles, human does not need to operate continuously vehicles. The brain-computer interface system in autonomous vehicles will highly depend on the brain states of passengers rather than those of human drivers. It is a meaningful and vital choice to translate the mental activities of human beings, essentially playing the role of advanced sensors, into safe driving.

View Article and Find Full Text PDF

Accurate occupant injury prediction in near-collision scenarios is vital in guiding intelligent vehicles to find the optimal collision condition with minimal injury risks. Existing studies focused on boosting prediction performance by introducing deep-learning models but encountered computational burdens due to the inherent high model complexity. To better balance these two traditionally contradictory factors, this study proposed a training method for pre-crash injury prediction models, namely, knowledge distillation (KD)-based training.

View Article and Find Full Text PDF

In this study, using computational biomechanics models, we investigated influence of the skull-brain interface modeling approach and the material property of cerebrum on the kinetic, kinematic and injury outputs. Live animal head impact tests of different severities were reconstructed in finite element simulations and DAI and ASDH injury results were compared. We used the head/brain models of Total HUman Model for Safety (THUMS) and Global Human Body Models Consortium (GHBMC), which had been validated under several loading conditions.

View Article and Find Full Text PDF

Automated vehicles (AVs) are anticipated to improve road traffic safety. However, prevailing decision-making algorithms have largely neglected the potential to mitigate injuries when confronting inevitable obstacles. To explore whether, how, and to what extent AVs can enhance human protection, we propose an injury risk mitigation-based decision-making algorithm.

View Article and Find Full Text PDF

Background: Costal cartilage calcification (CCC) increases with age and presents differently for men and women. In individuals, however, the cross-sectional studies that show such trends do not reveal the geometric trajectories through which calcification might accumulate across a lifetime. Generative adversarial networks have the potential to reveal such trajectories from cross-sectional data by learning population trends and synthesizing individualized images at progressive levels of calcification.

View Article and Find Full Text PDF

The active behaviors of pedestrians, such as avoidance motions, affect the resultant injury risk in vehicle-pedestrian collisions. However, the biomechanical features of these behaviors remain unquantified, leading to a gap in the development of biofidelic research tools and tailored protection for pedestrians in real-world traffic scenarios. In this study, we prompted subjects ("pedestrians") to exhibit natural avoidance behaviors in well-controlled near-real traffic conflict scenarios using a previously developed virtual reality (VR)-based experimental platform.

View Article and Find Full Text PDF

Accurate real-time prediction of occupant injury severity in unavoidable collision scenarios is a prerequisite for enhancing road traffic safety with the development of highly automated vehicles. Specifically, a safety prediction model provides a decision reference for the trajectory planning system in the pre-crash phase and the adaptive restraint system in the in-crash phase. The main goal of the current study is to construct a data-driven, vehicle kinematic feature-based model to realize accurate and near real-time prediction of in-vehicle occupant injury severity.

View Article and Find Full Text PDF
Article Synopsis
  • Human reaction is crucial for enhancing safety in emergency traffic situations involving vehicles and pedestrians.
  • The study analyzes how pedestrians react to avoid collisions using immersive virtual reality, measuring their physiological responses and movement patterns.
  • Findings reveal that most pedestrians (70%) successfully avoid collisions by adjusting their speed and direction, leading to insights that can aid in designing better safety systems for automated vehicles.
View Article and Find Full Text PDF

Objective: The objectives of this study were to develop a method for modeling obese pedestrians and to investigate effects of obesity on pedestrian impact responses and injury outcomes.

Methods: The GHBMC (Global Human Body Model Consortium) 50th percentile male pedestrian model was morphed into geometries with 4 body mass index (BMI) levels (25/30/35/40 kg/m) predicted by statistical body shape models. Each of the 4 morphed models was further morphed from a standing posture into 2 other gaits (toe-off and mid-swing), which resulted in a total of 12 (4 BMIs × 3 postures) models.

View Article and Find Full Text PDF

The potential challenge for providing occupant protection accompanying seating preferences is an essential safety prerequisite for highly automated vehicle (HAV) popularization. This research is aimed toward identifying Asia-specific individualized seating preferences in HAVs and occupant safety awareness via a national survey in China. An online questionnaire survey was performed to investigate seating preferences (i.

View Article and Find Full Text PDF

Biomechanical behavior of ankle ligaments varies among individuals, with the underlying mechanism at multiple scales remaining unquantified. The present probabilistic study investigated how population variability in ligament material properties would influence the joint mechanics. A previously developed finite element ankle model with parametric ligament properties was used.

View Article and Find Full Text PDF

Electric two-wheelers (E2Ws) have become newly popular transportation tools with the associated growing traffic safety concerns. E2W riders and bicyclists behave similarly as vulnerable road users (VRUs), while exhibited dissimilarities in riding postures and interactions with the two-wheelers. Existing epidemiology reveals prominent differences in injury risks between E2W riders and other vulnerable road users in collisions with motor vehicles.

View Article and Find Full Text PDF

As human body finite element models become more integrated with the design of safety countermeasures and regulations, novel models need to be developed that reflect the variation in the population's anthropometry. However, these new models may be missing information which will need to be translated from existing models. During the development of a 5th percentile female occupant model (F05), cortical thickness information of the coxal bone was unavailable due to resolution limits in the computed tomography (CT) scans.

View Article and Find Full Text PDF

Background: Forced external rotation of the foot is a mechanism of ankle injuries. Clinical observations include combinations of ligament and osseous injuries, with unclear links between causation and injury patterns. By observing the propagation sequence of ankle injuries during controlled experiments, insight necessary to understand risk factors and potential mitigation measures may be gained.

View Article and Find Full Text PDF

Objective: Recent field data analysis has demonstrated that knee airbags (KABs) can reduce occupant femur and pelvis injuries but may be insufficient to decrease leg injuries in motor vehicle crashes. An enhanced understanding of the associated injury mechanisms requires accurate assessment of physiological-based occupant parameters, some of which are difficult or impossible to obtain from experiments. This study sought to explore how active muscle response can influence the injury risk of lower extremities during KAB deployment using computational biomechanical analysis.

View Article and Find Full Text PDF

Ligament sprains account for a majority of injuries to the foot and ankle complex among athletic populations. The infeasibility of measuring the in situ response and load paths of individual ligaments has precluded a complete characterization of their mechanical behavior via experiment. In the present study a fiber-based modeling approach of in situ ankle ligaments was developed and validated for determining the heterogeneous force-elongation characteristics and the consequent injury patterns.

View Article and Find Full Text PDF

Ligament sprains, defined as tearing of bands of fibrous tissues within ligaments, account for a majority of injuries to the foot and ankle complex in field-based sports. External rotation of the foot is considered the primary injury mechanism of syndesmotic ankle sprains with concomitant flexion and inversion/eversion associated with particular patterns of ligament trauma. However, the influence of the magnitude and direction of loading vectors to the ankle on the in situ stress state of the ligaments has not been quantified in the literature.

View Article and Find Full Text PDF

The purpose of this study was to determine the long-time and transient characteristics of the moment generated by external (ER) and internal (IR) rotation of the calcaneus with respect to the tibia. Two human cadaver legs were disarticulated at the knee joint while maintaining the connective tissue between the tibia and fibula. An axial rotation of 21° was applied to the proximal tibia to generate either ER or IR while the fibula was unconstrained and the calcaneus was permitted to translate in the transverse plane.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the mechanical behavior of ankle ligaments using finite element modeling to better understand how these ligaments function under real-life conditions, particularly in a neutral foot position.
  • Nine key ankle ligaments were modeled to capture their force-displacement characteristics, including initial slackness and stiffness, through experimental simulations of foot movement.
  • The research successfully correlated ligament behavior with bony movements, offering insights into ankle joint mechanics and potential applications for understanding injuries and improving functional stability.
View Article and Find Full Text PDF

Objective: Occupants with extreme body size and shape, such as the small female or the obese, were reported to sustain high risk of injury in motor vehicle crashes (MVCs). Dimensional scaling approaches are widely used in injury biomechanics research based on the assumption of geometrical similarity. However, its application scope has not been quantified ever since.

View Article and Find Full Text PDF

Objective: The lower extremity of the occupant represents the most frequently injured body region in motor vehicle crashes. Knee airbags (KABs) have been implemented as a potential countermeasure to reduce lower extremity injuries. Despite the increasing prevalence of KABs in vehicles, the biomechanical interaction of the human lower extremity with the KAB has not been well characterized.

View Article and Find Full Text PDF

Objective: Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then.

View Article and Find Full Text PDF

Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force-elongation characteristics using a finite element ankle model.

View Article and Find Full Text PDF